Research output: Contribution to journal › Letter › peer-review
Reversible adsorption of nitrogen dioxide within a robust porous metal–organic framework. / Han, Xue; Godfrey, Harry G.W.; Briggs, Lydia et al.
In: Nature Materials, Vol. 17, No. 8, 01.08.2018, p. 691-696.Research output: Contribution to journal › Letter › peer-review
}
TY - JOUR
T1 - Reversible adsorption of nitrogen dioxide within a robust porous metal–organic framework
AU - Han, Xue
AU - Godfrey, Harry G.W.
AU - Briggs, Lydia
AU - Davies, Andrew J.
AU - Cheng, Yongqiang
AU - Daemen, Luke L.
AU - Sheveleva, Alena M.
AU - Tuna, Floriana
AU - McInnes, Eric J.L.
AU - Sun, Junliang
AU - Drathen, Christina
AU - George, Michael W.
AU - Ramirez-Cuesta, Anibal J.
AU - Thomas, K. Mark
AU - Yang, Sihai
AU - Schröder, Martin
PY - 2018/8/1
Y1 - 2018/8/1
N2 - Nitrogen dioxide (NO2) is a major air pollutant causing significant environmental1,2 and health problems3,4. We report reversible adsorption of NO2 in a robust metal–organic framework. Under ambient conditions, MFM-300(Al) exhibits a reversible NO2 isotherm uptake of 14.1 mmol g−1, and, more importantly, exceptional selective removal of low-concentration NO2 (5,000 to <1 ppm) from gas mixtures. Complementary experiments reveal five types of supramolecular interaction that cooperatively bind both NO2 and N2O4 molecules within MFM-300(Al). We find that the in situ equilibrium 2NO2 ↔ N2O4 within the pores is pressure-independent, whereas ex situ this equilibrium is an exemplary pressure-dependent first-order process. The coexistence of helical monomer–dimer chains of NO2 in MFM-300(Al) could provide a foundation for the fundamental understanding of the chemical properties of guest molecules within porous hosts. This work may pave the way for the development of future capture and conversion technologies.
AB - Nitrogen dioxide (NO2) is a major air pollutant causing significant environmental1,2 and health problems3,4. We report reversible adsorption of NO2 in a robust metal–organic framework. Under ambient conditions, MFM-300(Al) exhibits a reversible NO2 isotherm uptake of 14.1 mmol g−1, and, more importantly, exceptional selective removal of low-concentration NO2 (5,000 to <1 ppm) from gas mixtures. Complementary experiments reveal five types of supramolecular interaction that cooperatively bind both NO2 and N2O4 molecules within MFM-300(Al). We find that the in situ equilibrium 2NO2 ↔ N2O4 within the pores is pressure-independent, whereas ex situ this equilibrium is an exemplary pressure-dependent first-order process. The coexistence of helical monomer–dimer chains of NO2 in MFM-300(Al) could provide a foundation for the fundamental understanding of the chemical properties of guest molecules within porous hosts. This work may pave the way for the development of future capture and conversion technologies.
KW - AMBIENT CONDITIONS
KW - DINITROGEN TETROXIDE
KW - NO2 ADSORPTION
KW - ADSORBENTS
KW - REMOVAL
KW - DIFFRACTION
KW - POLLUTION
KW - PRESSURE
KW - SOFTWARE
KW - CAPACITY
UR - http://www.scopus.com/inward/record.url?scp=85048326971&partnerID=8YFLogxK
U2 - 10.1038/s41563-018-0104-7
DO - 10.1038/s41563-018-0104-7
M3 - Letter
C2 - 29891889
AN - SCOPUS:85048326971
VL - 17
SP - 691
EP - 696
JO - Nature Materials
JF - Nature Materials
SN - 1476-1122
IS - 8
ER -
ID: 13923348