Standard

Precision measurement of the W boson decay branching fractions in proton-proton collisions at s =13 TeV. / The CMS collaboration.

In: Physical Review D, Vol. 105, No. 7, 072008, 01.04.2022.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

The CMS collaboration. Precision measurement of the W boson decay branching fractions in proton-proton collisions at s =13 TeV. Physical Review D. 2022 Apr 1;105(7):072008. doi: 10.1103/PhysRevD.105.072008

Author

The CMS collaboration. / Precision measurement of the W boson decay branching fractions in proton-proton collisions at s =13 TeV. In: Physical Review D. 2022 ; Vol. 105, No. 7.

BibTeX

@article{ebe0672f9f13416c9541095857ea6674,
title = "Precision measurement of the W boson decay branching fractions in proton-proton collisions at s =13 TeV",
abstract = "The leptonic and inclusive hadronic decay branching fractions of the W boson are measured using proton-proton collision data collected at s=13 TeV by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of 35.9 fb-1. Events characterized by the production of one or two W bosons are selected and categorized based on the multiplicity and flavor of reconstructed leptons, the number of jets, and the number of jets identified as originating from the hadronization of b quarks. A binned maximum likelihood estimate of the W boson branching fractions is performed simultaneously in each event category. The measured branching fractions of the W boson decaying into electron, muon, and tau lepton final states are (10.83±0.10)%, (10.94±0.08)%, and (10.77±0.21)%, respectively, consistent with lepton flavor universality for the weak interaction. The average leptonic and inclusive hadronic decay branching fractions are estimated to be (10.89±0.08)% and (67.32±0.23)%, respectively. Based on the hadronic branching fraction, three standard model quantities are subsequently derived: the sum of squared elements in the first two rows of the Cabibbo-Kobayashi-Maskawa (CKM) matrix ∑ij|Vij|2=1.984±0.021, the CKM element |Vcs|=0.967±0.011, and the strong coupling constant at the W boson mass scale, αS(mW2)=0.095±0.033.",
author = "{The CMS collaboration} and A. Tumasyan and W. Adam and Andrejkovic, {J. W.} and T. Bergauer and S. Chatterjee and M. Dragicevic and {Del Valle}, {A. Escalante} and R. Fr{\"u}hwirth and M. Jeitler and N. Krammer and L. Lechner and D. Liko and I. Mikulec and P. Paulitsch and Pitters, {F. M.} and J. Schieck and R. Sch{\"o}fbeck and M. Spanring and S. Templ and W. Waltenberger and Wulz, {C. E.} and V. Chekhovsky and A. Litomin and V. Makarenko and Darwish, {M. R.} and {De Wolf}, {E. A.} and T. Janssen and T. Kello and A. Lelek and Sfar, {H. Rejeb} and {Van Mechelen}, P. and {Van Putte}, S. and {Van Remortel}, N. and F. Blekman and Bols, {E. S.} and J. D'Hondt and {De Clercq}, J. and M. Delcourt and Faham, {H. El} and S. Lowette and S. Moortgat and A. Morton and D. M{\"u}ller and Sahasransu, {A. R.} and V. Blinov and T. Dimova and L. Kardapoltsev and A. Kozyrev and I. Ovtin and Y. Skovpen",
note = "Funding Information: We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid and other centers for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC, the CMS detector, and the supporting computing infrastructure provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES and BNSF (Bulgaria); CERN; CAS, MoST, and NSFC (China); MINCIENCIAS (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); MoER, ERC PUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRI (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); MCIN/AEI and PCTI (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, Contract Nos. 675440, 724704, 752730, 758316, 765710, 824093, 884104, and COST Action CA16108 (European Union); the Leventis Foundation; the Alfred P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation {\`a} la Recherche dans l{\textquoteright}Industrie et dans l{\textquoteright}Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F. R. S.-FNRS and FWO (Belgium) under the “Excellence of Science—EOS”—be.h Project No. 30820817; the Beijing Municipal Science & Technology Commission, No. Z191100007219010; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Deutsche Forschungsgemeinschaft (DFG), under Germany{\textquoteright}s Excellence Strategy—EXC 2121 “Quantum Universe”—390833306, and under Project No. 400140256—GRK2497; the Lend{\"u}let (“Momentum”) Program and the J{\'a}nos Bolyai Research Scholarship of the Hungarian Academy of Sciences, the New National Excellence Program {\'U}NKP, the NKFIA research Grants No. 123842, No. 123959, No. 124845, No. 124850, No. 125105, No. 128713, No. 128786, and No. 129058 (Hungary); the Council of Science and Industrial Research, India; the Latvian Council of Science; the Ministry of Science and Higher Education and the National Science Center, Contracts No. Opus 2014/15/B/ST2/03998 and No. 2015/19/B/ST2/02861 (Poland); the Funda{\c c}{\~a}o para a Ci{\^e}ncia e a Tecnologia, Grant No. CEECIND/01334/2018 (Portugal); the National Priorities Research Program by Qatar National Research Fund; the Ministry of Science and Higher Education, Projects No. 0723-2020-0041 and No. FSWW-2020-0008, and the Russian Foundation for Basic Research, Projects No. 19-42-703014 (Russia); No. MCIN/AEI/10.13039/501100011033, ERDF “a way of making Europe”, and the Programa Estatal de Fomento de la Investigaci{\'o}n Cient{\'i}fica y T{\'e}cnica de Excelencia Mar{\'i}a de Maeztu, Grant No. MDM-2017-0765 and Programa Severo Ochoa del Principado de Asturias (Spain); the Stavros Niarchos Foundation (Greece); the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Kavli Foundation; the Nvidia Corporation; the SuperMicro Corporation; the Welch Foundation, Contract No. C-1845; and the Weston Havens Foundation (USA). Publisher Copyright: {\textcopyright} 2022 CERN.",
year = "2022",
month = apr,
day = "1",
doi = "10.1103/PhysRevD.105.072008",
language = "English",
volume = "105",
journal = "Physical Review D",
issn = "2470-0010",
publisher = "AMER PHYSICAL SOC",
number = "7",

}

RIS

TY - JOUR

T1 - Precision measurement of the W boson decay branching fractions in proton-proton collisions at s =13 TeV

AU - The CMS collaboration

AU - Tumasyan, A.

AU - Adam, W.

AU - Andrejkovic, J. W.

AU - Bergauer, T.

AU - Chatterjee, S.

AU - Dragicevic, M.

AU - Del Valle, A. Escalante

AU - Frühwirth, R.

AU - Jeitler, M.

AU - Krammer, N.

AU - Lechner, L.

AU - Liko, D.

AU - Mikulec, I.

AU - Paulitsch, P.

AU - Pitters, F. M.

AU - Schieck, J.

AU - Schöfbeck, R.

AU - Spanring, M.

AU - Templ, S.

AU - Waltenberger, W.

AU - Wulz, C. E.

AU - Chekhovsky, V.

AU - Litomin, A.

AU - Makarenko, V.

AU - Darwish, M. R.

AU - De Wolf, E. A.

AU - Janssen, T.

AU - Kello, T.

AU - Lelek, A.

AU - Sfar, H. Rejeb

AU - Van Mechelen, P.

AU - Van Putte, S.

AU - Van Remortel, N.

AU - Blekman, F.

AU - Bols, E. S.

AU - D'Hondt, J.

AU - De Clercq, J.

AU - Delcourt, M.

AU - Faham, H. El

AU - Lowette, S.

AU - Moortgat, S.

AU - Morton, A.

AU - Müller, D.

AU - Sahasransu, A. R.

AU - Blinov, V.

AU - Dimova, T.

AU - Kardapoltsev, L.

AU - Kozyrev, A.

AU - Ovtin, I.

AU - Skovpen, Y.

N1 - Funding Information: We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid and other centers for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC, the CMS detector, and the supporting computing infrastructure provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES and BNSF (Bulgaria); CERN; CAS, MoST, and NSFC (China); MINCIENCIAS (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); MoER, ERC PUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRI (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); MCIN/AEI and PCTI (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, Contract Nos. 675440, 724704, 752730, 758316, 765710, 824093, 884104, and COST Action CA16108 (European Union); the Leventis Foundation; the Alfred P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F. R. S.-FNRS and FWO (Belgium) under the “Excellence of Science—EOS”—be.h Project No. 30820817; the Beijing Municipal Science & Technology Commission, No. Z191100007219010; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Deutsche Forschungsgemeinschaft (DFG), under Germany’s Excellence Strategy—EXC 2121 “Quantum Universe”—390833306, and under Project No. 400140256—GRK2497; the Lendület (“Momentum”) Program and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, the New National Excellence Program ÚNKP, the NKFIA research Grants No. 123842, No. 123959, No. 124845, No. 124850, No. 125105, No. 128713, No. 128786, and No. 129058 (Hungary); the Council of Science and Industrial Research, India; the Latvian Council of Science; the Ministry of Science and Higher Education and the National Science Center, Contracts No. Opus 2014/15/B/ST2/03998 and No. 2015/19/B/ST2/02861 (Poland); the Fundação para a Ciência e a Tecnologia, Grant No. CEECIND/01334/2018 (Portugal); the National Priorities Research Program by Qatar National Research Fund; the Ministry of Science and Higher Education, Projects No. 0723-2020-0041 and No. FSWW-2020-0008, and the Russian Foundation for Basic Research, Projects No. 19-42-703014 (Russia); No. MCIN/AEI/10.13039/501100011033, ERDF “a way of making Europe”, and the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia María de Maeztu, Grant No. MDM-2017-0765 and Programa Severo Ochoa del Principado de Asturias (Spain); the Stavros Niarchos Foundation (Greece); the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Kavli Foundation; the Nvidia Corporation; the SuperMicro Corporation; the Welch Foundation, Contract No. C-1845; and the Weston Havens Foundation (USA). Publisher Copyright: © 2022 CERN.

PY - 2022/4/1

Y1 - 2022/4/1

N2 - The leptonic and inclusive hadronic decay branching fractions of the W boson are measured using proton-proton collision data collected at s=13 TeV by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of 35.9 fb-1. Events characterized by the production of one or two W bosons are selected and categorized based on the multiplicity and flavor of reconstructed leptons, the number of jets, and the number of jets identified as originating from the hadronization of b quarks. A binned maximum likelihood estimate of the W boson branching fractions is performed simultaneously in each event category. The measured branching fractions of the W boson decaying into electron, muon, and tau lepton final states are (10.83±0.10)%, (10.94±0.08)%, and (10.77±0.21)%, respectively, consistent with lepton flavor universality for the weak interaction. The average leptonic and inclusive hadronic decay branching fractions are estimated to be (10.89±0.08)% and (67.32±0.23)%, respectively. Based on the hadronic branching fraction, three standard model quantities are subsequently derived: the sum of squared elements in the first two rows of the Cabibbo-Kobayashi-Maskawa (CKM) matrix ∑ij|Vij|2=1.984±0.021, the CKM element |Vcs|=0.967±0.011, and the strong coupling constant at the W boson mass scale, αS(mW2)=0.095±0.033.

AB - The leptonic and inclusive hadronic decay branching fractions of the W boson are measured using proton-proton collision data collected at s=13 TeV by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of 35.9 fb-1. Events characterized by the production of one or two W bosons are selected and categorized based on the multiplicity and flavor of reconstructed leptons, the number of jets, and the number of jets identified as originating from the hadronization of b quarks. A binned maximum likelihood estimate of the W boson branching fractions is performed simultaneously in each event category. The measured branching fractions of the W boson decaying into electron, muon, and tau lepton final states are (10.83±0.10)%, (10.94±0.08)%, and (10.77±0.21)%, respectively, consistent with lepton flavor universality for the weak interaction. The average leptonic and inclusive hadronic decay branching fractions are estimated to be (10.89±0.08)% and (67.32±0.23)%, respectively. Based on the hadronic branching fraction, three standard model quantities are subsequently derived: the sum of squared elements in the first two rows of the Cabibbo-Kobayashi-Maskawa (CKM) matrix ∑ij|Vij|2=1.984±0.021, the CKM element |Vcs|=0.967±0.011, and the strong coupling constant at the W boson mass scale, αS(mW2)=0.095±0.033.

UR - http://www.scopus.com/inward/record.url?scp=85130262791&partnerID=8YFLogxK

U2 - 10.1103/PhysRevD.105.072008

DO - 10.1103/PhysRevD.105.072008

M3 - Article

AN - SCOPUS:85130262791

VL - 105

JO - Physical Review D

JF - Physical Review D

SN - 2470-0010

IS - 7

M1 - 072008

ER -

ID: 36544996