Research output: Contribution to journal › Article › peer-review
Performance of top-quark and W -boson tagging with ATLAS in Run 2 of the LHC. / The ATLAS collaboration ; Балдин, Евгений Михайлович; Бобровников, Виктор Сергеевич et al.
In: European Physical Journal C, Vol. 79, No. 5, 375, 01.05.2019.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Performance of top-quark and W -boson tagging with ATLAS in Run 2 of the LHC
AU - The ATLAS collaboration
AU - Aaboud, M.
AU - Aad, G.
AU - Abbott, B.
AU - Abdinov, O.
AU - Abeloos, B.
AU - Abhayasinghe, D. K.
AU - Abidi, S. H.
AU - AbouZeid, O. S.
AU - Abraham, N. L.
AU - Abramowicz, H.
AU - Abreu, H.
AU - Abulaiti, Y.
AU - Acharya, B. S.
AU - Adachi, S.
AU - Adam, L.
AU - Adamczyk, L.
AU - Adelman, J.
AU - Adersberger, M.
AU - Adiguzel, A.
AU - Adye, T.
AU - Affolder, A. A.
AU - Afik, Y.
AU - Agheorghiesei, C.
AU - Aguilar-Saavedra, J. A.
AU - Ahmadov, F.
AU - Aielli, G.
AU - Akatsuka, S.
AU - Åkesson, T. P.A.
AU - Akilli, E.
AU - Akimov, A. V.
AU - Alberghi, G. L.
AU - Albert, J.
AU - Albicocco, P.
AU - Alconada Verzini, M. J.
AU - Alderweireldt, S.
AU - Aleksa, M.
AU - Aleksandrov, I. N.
AU - Alexa, C.
AU - Alexopoulos, T.
AU - Alhroob, M.
AU - Ali, B.
AU - Alimonti, G.
AU - Anisenkov, A. V.
AU - Kazanin, V. F.
AU - Kharlamova, T.
AU - Maximov, D. A.
AU - Podberezko, P.
AU - Rezanova, O. L.
AU - Soukharev, A. M.
AU - Zhulanov, V.
AU - Балдин, Евгений Михайлович
AU - Бобровников, Виктор Сергеевич
AU - Харламов, Алексей Георгиевич
AU - Бузыкаев, Алексей Рафаилович
AU - Харламов, Алексей Георгиевич
AU - Масленников, Алексей Леонидович
AU - Пелеганчук, Сергей Владимирович
AU - Талышев, Алексей Александрович
AU - Тихонов, Юрий Анатольевич
AU - Bogdanchikov, A. G.
N1 - Publisher Copyright: © 2019, CERN for the benefit of the ATLAS collaboration.
PY - 2019/5/1
Y1 - 2019/5/1
N2 - The performance of identification algorithms (“taggers”) for hadronically decaying top quarks and W bosons in pp collisions at s = 13 TeV recorded by the ATLAS experiment at the Large Hadron Collider is presented. A set of techniques based on jet shape observables are studied to determine a set of optimal cut-based taggers for use in physics analyses. The studies are extended to assess the utility of combinations of substructure observables as a multivariate tagger using boosted decision trees or deep neural networks in comparison with taggers based on two-variable combinations. In addition, for highly boosted top-quark tagging, a deep neural network based on jet constituent inputs as well as a re-optimisation of the shower deconstruction technique is presented. The performance of these taggers is studied in data collected during 2015 and 2016 corresponding to 36.1 fb - 1 for the tt¯ and γ+ jet and 36.7 fb - 1 for the dijet event topologies.
AB - The performance of identification algorithms (“taggers”) for hadronically decaying top quarks and W bosons in pp collisions at s = 13 TeV recorded by the ATLAS experiment at the Large Hadron Collider is presented. A set of techniques based on jet shape observables are studied to determine a set of optimal cut-based taggers for use in physics analyses. The studies are extended to assess the utility of combinations of substructure observables as a multivariate tagger using boosted decision trees or deep neural networks in comparison with taggers based on two-variable combinations. In addition, for highly boosted top-quark tagging, a deep neural network based on jet constituent inputs as well as a re-optimisation of the shower deconstruction technique is presented. The performance of these taggers is studied in data collected during 2015 and 2016 corresponding to 36.1 fb - 1 for the tt¯ and γ+ jet and 36.7 fb - 1 for the dijet event topologies.
UR - http://www.scopus.com/inward/record.url?scp=85065123030&partnerID=8YFLogxK
U2 - 10.1140/epjc/s10052-019-6847-8
DO - 10.1140/epjc/s10052-019-6847-8
M3 - Article
AN - SCOPUS:85065123030
VL - 79
JO - European Physical Journal C
JF - European Physical Journal C
SN - 1434-6044
IS - 5
M1 - 375
ER -
ID: 20156255