Research output: Contribution to journal › Article › peer-review
Origin of K-rich diamond-forming immiscible melts and CO2 fluid via partial melting of carbonated pelites at a depth of 180–200 km. / Shatskiy, Anton; Arefiev, Anton V.; Podborodnikov, Ivan V. et al.
In: Gondwana Research, Vol. 75, 11.2019, p. 154-171.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Origin of K-rich diamond-forming immiscible melts and CO2 fluid via partial melting of carbonated pelites at a depth of 180–200 km
AU - Shatskiy, Anton
AU - Arefiev, Anton V.
AU - Podborodnikov, Ivan V.
AU - Litasov, Konstantin D.
N1 - Publisher Copyright: © 2019 International Association for Gondwana Research Copyright: Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2019/11
Y1 - 2019/11
N2 - Melt inclusions in kimberlitic and metamorphic diamonds worldwide range in composition from potassic aluminosilicate to alkali-rich carbonatitic and their low-temperature derivative, a saline high-density fluid (HDF). The discovery of CO2 inclusions in diamonds containing eclogitic minerals are also essential. These melts and HDFs may be responsible for diamond formation and metasomatic alteration of mantle rocks since the late Archean to Phanerozoic. Although a genetic link between these melts and fluids was suggested, their origin is still highly uncertain. Here we present experimental results on melting phase relations in a carbonated pelite at 6 GPa and 900–1500 °C. We found that just below solidus K2O enters potassium feldspar or K2TiSi3O9 wadeite coexisting with clinopyroxene, garnet, kyanite, coesite, and dolomite. The potassium phases react with dolomite to produce garnet, kyanite, coesite, and potassic dolomitic melt, 40(K0.90Na0.10)2CO3·60Ca0.55Mg0.24Fe0.21CO3 + 1.9 mol% SiO2 + 0.7 mol% TiO2 + 1.4 mol% Al2O3 at the solidus established near 1000 °C. Molecular CO2 liberates at 1100 °C. Potassic aluminosilicate melt appears in addition to carbonatite melt at 1200 °C. This melt contains (mol/wt%): SiO2 = 57.0/52.4, TiO2 = 1.8/2.3, Al2O3 = 8.5/13.0, FeO = 1.4/1.6, MgO = 1.9/1.2, CaO = 3.8/3.2, Na2O = 3.2/3.0, K2O = 10.5/15.2, CO2 = 12.0/8.0, while carbonatite melt can be approximated as 24(K0.81Na0.19)2CO3·76Ca0.59Mg0.21Fe0.20CO3 + 3.0 mol% SiO2 + 1.6 mol% TiO2 + 1.4 mol% Al2O3. Both melts remain stable to at least 1500 °C coexisting with CO2 fluid and residual eclogite assemblage consisting of K-rich omphacite (0.4–1.5 wt% K2O), almandine-pyrope-grossular garnet, kyanite, and coesite. The obtained immiscible alkali‑carbonatitic and potassic aluminosilicate melts resemble compositions of melt inclusions in diamonds worldwide. Thus, these melts entrapped by diamonds could be derived by partial melting of the carbonated material of the continental crust subducted down to 180–200 km depths. Given the high solubility of chlorides and water in both carbonate and aluminosilicate melts inferred in previous experiments, the saline end-member, brine, could evolve from potassic carbonatitic and/or silicic melts by fractionation of Ca-Mg carbonates/eclogitic minerals and accumulation of alkalis, chlorine and water in the residual low-temperature supercritical fluid. Direct extraction from the hydrated marine sediments under conditions of cold subduction would be another possibility for the brine formation.
AB - Melt inclusions in kimberlitic and metamorphic diamonds worldwide range in composition from potassic aluminosilicate to alkali-rich carbonatitic and their low-temperature derivative, a saline high-density fluid (HDF). The discovery of CO2 inclusions in diamonds containing eclogitic minerals are also essential. These melts and HDFs may be responsible for diamond formation and metasomatic alteration of mantle rocks since the late Archean to Phanerozoic. Although a genetic link between these melts and fluids was suggested, their origin is still highly uncertain. Here we present experimental results on melting phase relations in a carbonated pelite at 6 GPa and 900–1500 °C. We found that just below solidus K2O enters potassium feldspar or K2TiSi3O9 wadeite coexisting with clinopyroxene, garnet, kyanite, coesite, and dolomite. The potassium phases react with dolomite to produce garnet, kyanite, coesite, and potassic dolomitic melt, 40(K0.90Na0.10)2CO3·60Ca0.55Mg0.24Fe0.21CO3 + 1.9 mol% SiO2 + 0.7 mol% TiO2 + 1.4 mol% Al2O3 at the solidus established near 1000 °C. Molecular CO2 liberates at 1100 °C. Potassic aluminosilicate melt appears in addition to carbonatite melt at 1200 °C. This melt contains (mol/wt%): SiO2 = 57.0/52.4, TiO2 = 1.8/2.3, Al2O3 = 8.5/13.0, FeO = 1.4/1.6, MgO = 1.9/1.2, CaO = 3.8/3.2, Na2O = 3.2/3.0, K2O = 10.5/15.2, CO2 = 12.0/8.0, while carbonatite melt can be approximated as 24(K0.81Na0.19)2CO3·76Ca0.59Mg0.21Fe0.20CO3 + 3.0 mol% SiO2 + 1.6 mol% TiO2 + 1.4 mol% Al2O3. Both melts remain stable to at least 1500 °C coexisting with CO2 fluid and residual eclogite assemblage consisting of K-rich omphacite (0.4–1.5 wt% K2O), almandine-pyrope-grossular garnet, kyanite, and coesite. The obtained immiscible alkali‑carbonatitic and potassic aluminosilicate melts resemble compositions of melt inclusions in diamonds worldwide. Thus, these melts entrapped by diamonds could be derived by partial melting of the carbonated material of the continental crust subducted down to 180–200 km depths. Given the high solubility of chlorides and water in both carbonate and aluminosilicate melts inferred in previous experiments, the saline end-member, brine, could evolve from potassic carbonatitic and/or silicic melts by fractionation of Ca-Mg carbonates/eclogitic minerals and accumulation of alkalis, chlorine and water in the residual low-temperature supercritical fluid. Direct extraction from the hydrated marine sediments under conditions of cold subduction would be another possibility for the brine formation.
KW - Carbonate-silicate liquid immiscibility
KW - Diamond formation
KW - Earth's mantle
KW - High-density fluids
KW - High-pressure experiment
UR - http://www.scopus.com/inward/record.url?scp=85067516570&partnerID=8YFLogxK
U2 - 10.1016/j.gr.2019.05.004
DO - 10.1016/j.gr.2019.05.004
M3 - Article
VL - 75
SP - 154
EP - 171
JO - Gondwana Research
JF - Gondwana Research
SN - 1342-937X
ER -
ID: 23288780