Research output: Contribution to journal › Article › peer-review
Optimization of the beam crossing angle at the ILC for e+e- and γ γ collisions. / Telnov, V. I.
In: Journal of Instrumentation, Vol. 13, No. 3, P03020, 26.03.2018.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Optimization of the beam crossing angle at the ILC for e+e- and γ γ collisions
AU - Telnov, V. I.
N1 - Publisher Copyright: © 2018 IOP Publishing Ltd and Sissa Medialab.
PY - 2018/3/26
Y1 - 2018/3/26
N2 - At this time, the design of the International Linear Collider (ILC) is optimized for e+e- collisions; the photon collider (γ γ and ≥) is considered as an option. Unexpected discoveries, such as the diphoton excess γ(750) seen at the LHC, could strongly motivate the construction of a photon collider. In order to enable the γ γ collision option, the ILC design should be compatible with it from the very beginning. In this paper, we discuss the problem of the beam crossing angle. In the ILC technical design [1], this angle is 14 mrad, which is just enough to provide enough space for the final quadrupoles and outgoing beams. For γ γ collisions, the crossing angle must be larger because the low-energy electrons that result from multiple Compton scattering get large disruption angles in collisions with the opposing electron beam and some deflection in the solenoidal detector field. For a 2E0=500 GeV collider, the required crossing angle is about 25 mrad. In this paper, we consider the factors that determine the crossing angle as well as its minimum permissible value that does not yet cause a considerable reduction of the γ γ luminosity. It is shown that the best solution is to increase the laser wavelength from the current 1 μm (which is optimal for 2E0=500 GeV) to 2 μm as this makes possible achieving high γ γ luminosities at a crossing angle of 20 mrad, which is also quite comfortable for e+e- collisions, does not cause any degradation of the e+e- luminosity and opens the possibility for a more energetic future collider in the same tunnel (e.g., CLIC). Moreover, the 2 μm wavelength is optimal for a 2E0 = 1 TeV; collider, e.g., a possible ILC energy upgrade. Please consider this paper an appeal to increase the ILC crossing angle from 14 to 20 mrad.
AB - At this time, the design of the International Linear Collider (ILC) is optimized for e+e- collisions; the photon collider (γ γ and ≥) is considered as an option. Unexpected discoveries, such as the diphoton excess γ(750) seen at the LHC, could strongly motivate the construction of a photon collider. In order to enable the γ γ collision option, the ILC design should be compatible with it from the very beginning. In this paper, we discuss the problem of the beam crossing angle. In the ILC technical design [1], this angle is 14 mrad, which is just enough to provide enough space for the final quadrupoles and outgoing beams. For γ γ collisions, the crossing angle must be larger because the low-energy electrons that result from multiple Compton scattering get large disruption angles in collisions with the opposing electron beam and some deflection in the solenoidal detector field. For a 2E0=500 GeV collider, the required crossing angle is about 25 mrad. In this paper, we consider the factors that determine the crossing angle as well as its minimum permissible value that does not yet cause a considerable reduction of the γ γ luminosity. It is shown that the best solution is to increase the laser wavelength from the current 1 μm (which is optimal for 2E0=500 GeV) to 2 μm as this makes possible achieving high γ γ luminosities at a crossing angle of 20 mrad, which is also quite comfortable for e+e- collisions, does not cause any degradation of the e+e- luminosity and opens the possibility for a more energetic future collider in the same tunnel (e.g., CLIC). Moreover, the 2 μm wavelength is optimal for a 2E0 = 1 TeV; collider, e.g., a possible ILC energy upgrade. Please consider this paper an appeal to increase the ILC crossing angle from 14 to 20 mrad.
KW - Accelerator modelling and simulations
KW - multi-particle dynamics
KW - single-particle dynamics
KW - Beam dynamics
KW - Instrumentation for particle accelerators and storage rings - high energy (linear accelerators, synchrotrons)
KW - Lasers
KW - PHOTON COLLIDERS
KW - ACCELERATORS
UR - http://www.scopus.com/inward/record.url?scp=85045007862&partnerID=8YFLogxK
U2 - 10.1088/1748-0221/13/03/P03020
DO - 10.1088/1748-0221/13/03/P03020
M3 - Article
AN - SCOPUS:85045007862
VL - 13
JO - Journal of Instrumentation
JF - Journal of Instrumentation
SN - 1748-0221
IS - 3
M1 - P03020
ER -
ID: 12417598