Standard

Observation of the Higgs boson decay to a pair of τ leptons with the CMS detector. / The CMS collaboration.

In: Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, Vol. 779, 10.04.2018, p. 283-316.

Research output: Contribution to journalArticlepeer-review

Harvard

The CMS collaboration 2018, 'Observation of the Higgs boson decay to a pair of τ leptons with the CMS detector', Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, vol. 779, pp. 283-316. https://doi.org/10.1016/j.physletb.2018.02.004

APA

The CMS collaboration (2018). Observation of the Higgs boson decay to a pair of τ leptons with the CMS detector. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 779, 283-316. https://doi.org/10.1016/j.physletb.2018.02.004

Vancouver

The CMS collaboration. Observation of the Higgs boson decay to a pair of τ leptons with the CMS detector. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics. 2018 Apr 10;779:283-316. doi: 10.1016/j.physletb.2018.02.004

Author

The CMS collaboration. / Observation of the Higgs boson decay to a pair of τ leptons with the CMS detector. In: Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics. 2018 ; Vol. 779. pp. 283-316.

BibTeX

@article{9168722724764cb483aaf6b3f60ecdc9,
title = "Observation of the Higgs boson decay to a pair of τ leptons with the CMS detector",
abstract = "A measurement of the H→ττ signal strength is performed using events recorded in proton–proton collisions by the CMS experiment at the LHC in 2016 at a center-of-mass energy of 13TeV. The data set corresponds to an integrated luminosity of 35.9fb−1. The H→ττ signal is established with a significance of 4.9 standard deviations, to be compared to an expected significance of 4.7 standard deviations. The best fit of the product of the observed H→ττ signal production cross section and branching fraction is 1.09−0.26 +0.27 times the standard model expectation. The combination with the corresponding measurement performed with data collected by the CMS experiment at center-of-mass energies of 7 and 8TeV leads to an observed significance of 5.9 standard deviations, equal to the expected significance. This is the first observation of Higgs boson decays to τ leptons by a single experiment.",
keywords = "CMS, Higgs, LHC, Observation, Physics, Tau, SEARCH, MODEL, ATLAS, BROKEN SYMMETRIES, ROOT-S=7, MASS, 8 TEV, PP COLLISIONS",
author = "{The CMS collaboration} and Sirunyan, {A. M.} and A. Tumasyan and W. Adam and F. Ambrogi and E. Asilar and T. Bergauer and J. Brandstetter and E. Brondolin and M. Dragicevic and J. Er{\"o} and M. Flechl and M. Friedl and R. Fr{\"u}hwirth and Ghete, {V. M.} and J. Grossmann and J. Hrubec and M. Jeitler and A. K{\"o}nig and N. Krammer and I. Kr{\"a}tschmer and D. Liko and T. Madlener and I. Mikulec and E. Pree and D. Rabady and N. Rad and H. Rohringer and J. Schieck and R. Sch{\"o}fbeck and M. Spanring and D. Spitzbart and W. Waltenberger and J. Wittmann and Wulz, {C. E.} and M. Zarucki and V. Chekhovsky and V. Mossolov and {Suarez Gonzalez}, J. and {De Wolf}, {E. A.} and {Di Croce}, D. and X. Janssen and J. Lauwers and {Van Haevermaet}, H. and {Van Mechelen}, P. and {Van Remortel}, N. and {Abu Zeid}, S. and F. Blekman and J. D'Hondt and Y. Skovpen and D. Shtol",
note = "We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR and RAEP (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract No. 675440 (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/ 02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Welch Foundation, contract C-1845.",
year = "2018",
month = apr,
day = "10",
doi = "10.1016/j.physletb.2018.02.004",
language = "English",
volume = "779",
pages = "283--316",
journal = "Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics",
issn = "0370-2693",
publisher = "Elsevier",

}

RIS

TY - JOUR

T1 - Observation of the Higgs boson decay to a pair of τ leptons with the CMS detector

AU - The CMS collaboration

AU - Sirunyan, A. M.

AU - Tumasyan, A.

AU - Adam, W.

AU - Ambrogi, F.

AU - Asilar, E.

AU - Bergauer, T.

AU - Brandstetter, J.

AU - Brondolin, E.

AU - Dragicevic, M.

AU - Erö, J.

AU - Flechl, M.

AU - Friedl, M.

AU - Frühwirth, R.

AU - Ghete, V. M.

AU - Grossmann, J.

AU - Hrubec, J.

AU - Jeitler, M.

AU - König, A.

AU - Krammer, N.

AU - Krätschmer, I.

AU - Liko, D.

AU - Madlener, T.

AU - Mikulec, I.

AU - Pree, E.

AU - Rabady, D.

AU - Rad, N.

AU - Rohringer, H.

AU - Schieck, J.

AU - Schöfbeck, R.

AU - Spanring, M.

AU - Spitzbart, D.

AU - Waltenberger, W.

AU - Wittmann, J.

AU - Wulz, C. E.

AU - Zarucki, M.

AU - Chekhovsky, V.

AU - Mossolov, V.

AU - Suarez Gonzalez, J.

AU - De Wolf, E. A.

AU - Di Croce, D.

AU - Janssen, X.

AU - Lauwers, J.

AU - Van Haevermaet, H.

AU - Van Mechelen, P.

AU - Van Remortel, N.

AU - Abu Zeid, S.

AU - Blekman, F.

AU - D'Hondt, J.

AU - Skovpen, Y.

AU - Shtol, D.

N1 - We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR and RAEP (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract No. 675440 (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/ 02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Welch Foundation, contract C-1845.

PY - 2018/4/10

Y1 - 2018/4/10

N2 - A measurement of the H→ττ signal strength is performed using events recorded in proton–proton collisions by the CMS experiment at the LHC in 2016 at a center-of-mass energy of 13TeV. The data set corresponds to an integrated luminosity of 35.9fb−1. The H→ττ signal is established with a significance of 4.9 standard deviations, to be compared to an expected significance of 4.7 standard deviations. The best fit of the product of the observed H→ττ signal production cross section and branching fraction is 1.09−0.26 +0.27 times the standard model expectation. The combination with the corresponding measurement performed with data collected by the CMS experiment at center-of-mass energies of 7 and 8TeV leads to an observed significance of 5.9 standard deviations, equal to the expected significance. This is the first observation of Higgs boson decays to τ leptons by a single experiment.

AB - A measurement of the H→ττ signal strength is performed using events recorded in proton–proton collisions by the CMS experiment at the LHC in 2016 at a center-of-mass energy of 13TeV. The data set corresponds to an integrated luminosity of 35.9fb−1. The H→ττ signal is established with a significance of 4.9 standard deviations, to be compared to an expected significance of 4.7 standard deviations. The best fit of the product of the observed H→ττ signal production cross section and branching fraction is 1.09−0.26 +0.27 times the standard model expectation. The combination with the corresponding measurement performed with data collected by the CMS experiment at center-of-mass energies of 7 and 8TeV leads to an observed significance of 5.9 standard deviations, equal to the expected significance. This is the first observation of Higgs boson decays to τ leptons by a single experiment.

KW - CMS

KW - Higgs

KW - LHC

KW - Observation

KW - Physics

KW - Tau

KW - SEARCH

KW - MODEL

KW - ATLAS

KW - BROKEN SYMMETRIES

KW - ROOT-S=7

KW - MASS

KW - 8 TEV

KW - PP COLLISIONS

UR - http://www.scopus.com/inward/record.url?scp=85047666573&partnerID=8YFLogxK

U2 - 10.1016/j.physletb.2018.02.004

DO - 10.1016/j.physletb.2018.02.004

M3 - Article

AN - SCOPUS:85047666573

VL - 779

SP - 283

EP - 316

JO - Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics

JF - Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics

SN - 0370-2693

ER -

ID: 17633529