Research output: Contribution to journal › Article › peer-review
Numerical Approaches in Nonlinear Fourier Transform-Based Signal Processing for Telecommunications. / Sedov, Egor; Chekhovskoy, Igor; Fedoruk, Mikhail et al.
In: Studies in Applied Mathematics, Vol. 154, No. 1, e12795, 06.12.2024.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Numerical Approaches in Nonlinear Fourier Transform-Based Signal Processing for Telecommunications
AU - Sedov, Egor
AU - Chekhovskoy, Igor
AU - Fedoruk, Mikhail
AU - Turitsyn, Sergey
N1 - Сведения о финансировании Финансирующий спонсор Номер финансирования Акроним Engineering and Physical Sciences Research Council Просмотр возможностей от EPSRC EPSRC Russian Science Foundation 20‐11‐20040 RSF
PY - 2024/12/6
Y1 - 2024/12/6
N2 - We discuss applications of the inverse scattering transform, also known as the nonlinear Fourier transform (NFT) in telecommunications, both for nonlinear optical fiber communication channel equalization and time-domain signal processing techniques. Our main focus is on the challenges and recent progress in the development of efficient numerical algorithms and approaches to NFT implementation.
AB - We discuss applications of the inverse scattering transform, also known as the nonlinear Fourier transform (NFT) in telecommunications, both for nonlinear optical fiber communication channel equalization and time-domain signal processing techniques. Our main focus is on the challenges and recent progress in the development of efficient numerical algorithms and approaches to NFT implementation.
KW - inverse scattering transform
KW - nonlinear Fourier transform
KW - nonlinear Schrödinger equation
KW - optical communication
UR - https://www.mendeley.com/catalogue/6df55b22-06d3-327b-a58f-939499181f51/
UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85211206072&origin=inward&txGid=1f80bfb3ff27359f7595b1bed30fa418
U2 - 10.1111/sapm.12795
DO - 10.1111/sapm.12795
M3 - Article
VL - 154
JO - Studies in Applied Mathematics
JF - Studies in Applied Mathematics
SN - 0022-2526
IS - 1
M1 - e12795
ER -
ID: 62790320