Standard

Measurement of prompt D0 and D‾0 meson azimuthal anisotropy and search for strong electric fields in PbPb collisions at sNN=5.02TeV. / The CMS collaboration.

In: Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, Vol. 816, 136253, 10.05.2021.

Research output: Contribution to journalArticlepeer-review

Harvard

The CMS collaboration 2021, 'Measurement of prompt D0 and D‾0 meson azimuthal anisotropy and search for strong electric fields in PbPb collisions at sNN=5.02TeV', Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, vol. 816, 136253. https://doi.org/10.1016/j.physletb.2021.136253

APA

The CMS collaboration (2021). Measurement of prompt D0 and D‾0 meson azimuthal anisotropy and search for strong electric fields in PbPb collisions at sNN=5.02TeV. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 816, [136253]. https://doi.org/10.1016/j.physletb.2021.136253

Vancouver

The CMS collaboration. Measurement of prompt D0 and D‾0 meson azimuthal anisotropy and search for strong electric fields in PbPb collisions at sNN=5.02TeV. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics. 2021 May 10;816:136253. doi: 10.1016/j.physletb.2021.136253

Author

The CMS collaboration. / Measurement of prompt D0 and D‾0 meson azimuthal anisotropy and search for strong electric fields in PbPb collisions at sNN=5.02TeV. In: Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics. 2021 ; Vol. 816.

BibTeX

@article{b5cbd2052e5843e6a9cecef37df97427,
title = "Measurement of prompt D0 and D‾0 meson azimuthal anisotropy and search for strong electric fields in PbPb collisions at sNN=5.02TeV",
abstract = "The strong Coulomb field created in ultrarelativistic heavy ion collisions is expected to produce a rapidity-dependent difference (Δv2) in the second Fourier coefficient of the azimuthal distribution (elliptic flow, v2) between D0 (u‾c) and D‾0 (uc‾) mesons. Motivated by the search for evidence of this field, the CMS detector at the LHC is used to perform the first measurement of Δv2. The rapidity-averaged value is found to be 〈Δv2〉=0.001±0.001(stat)±0.003(syst) in PbPb collisions at sNN=5.02TeV. In addition, the influence of the collision geometry is explored by measuring the D0 and D‾0mesons v2 and triangular flow coefficient (v3) as functions of rapidity, transverse momentum (pT), and event centrality (a measure of the overlap of the two Pb nuclei). A clear centrality dependence of prompt D0 meson v2 values is observed, while the v3 is largely independent of centrality. These trends are consistent with expectations of flow driven by the initial-state geometry.",
keywords = "Charm, CMS, Electromagnetic fields, Heavy-flavor",
author = "{The CMS collaboration} and Sirunyan, {A. M.} and A. Tumasyan and W. Adam and F. Ambrogi and T. Bergauer and M. Dragicevic and J. Er{\"o} and {Escalante Del Valle}, A. and R. Fr{\"u}hwirth and M. Jeitler and N. Krammer and L. Lechner and D. Liko and T. Madlener and I. Mikulec and N. Rad and J. Schieck and R. Sch{\"o}fbeck and M. Spanring and S. Templ and W. Waltenberger and Wulz, {C. E.} and M. Zarucki and V. Chekhovsky and A. Litomin and V. Makarenko and {Suarez Gonzalez}, J. and Darwish, {M. R.} and {De Wolf}, {E. A.} and {Di Croce}, D. and X. Janssen and T. Kello and A. Lelek and M. Pieters and {Rejeb Sfar}, H. and {Van Haevermaet}, H. and {Van Mechelen}, P. and {Van Putte}, S. and {Van Remortel}, N. and F. Blekman and Bols, {E. S.} and Chhibra, {S. S.} and J. D'Hondt and {De Clercq}, J. and D. Lontkovskyi and V. Blinov and T. Dimova and L. Kardapoltsev and I. Ovtin and Y. Skovpen",
note = "Funding Information: We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq , CAPES , FAPERJ , FAPERGS , and FAPESP (Brazil); MES (Bulgaria); CERN ; CAS , MOST , and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); MoER , ERC IUT , PUT and ERDF (Estonia); Academy of Finland , MEC , and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF , DFG , and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP , CINVESTAV , CONACYT , LNS , SEP , and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON , ROSATOM , RAS , RFBR , and NRC KI (Russia); MESTD (Serbia); SEIDI , CPAN , PCTI , and FEDER (Spain); MoSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter , IPST , STAR , and NSTDA (Thailand); T{\"U}BITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Funding Information: We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MOST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, PUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, ROSATOM, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MoSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); T?BITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract Nos. 675440, 752730, and 765710 (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation ? la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the ?Excellence of Science ? EOS? ? be.h project n. 30820817; the Beijing Municipal Science & Technology Commission, No. Z191100007219010; The Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Deutsche Forschungsgemeinschaft (DFG) under Germany's Excellence Strategy ? EXC 2121 ?Quantum Universe? ? 390833306; the Lend?let (?Momentum?) Program and the J?nos Bolyai Research Scholarship of the Hungarian Academy of Sciences, the New National Excellence Program ?NKP, the NKFIA research grants 123842, 123959, 124845, 124850, 125105, 128713, 128786, and 129058 (Hungary); the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Ministry of Science and Higher Education, project no. 02.a03.21.0005 (Russia); the Tomsk Polytechnic University Competitiveness Enhancement Program; the Programa Estatal de Fomento de la Investigaci?n Cient?fica y T?cnica de Excelencia Mar?a de Maeztu, grant MDM-2015-0509 and the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Kavli Foundation; the Nvidia Corporation; the SuperMicro Corporation; the Welch Foundation, contract C-1845; and the Weston Havens Foundation (USA). Funding Information: Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract Nos. 675440 , 752730 , and 765710 (European Union); the Leventis Foundation ; the A.P. Sloan Foundation ; the Alexander von Humboldt Foundation ; the Belgian Federal Science Policy Office ; the Fonds pour la Formation {\`a} la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science – EOS” – be.h project n. 30820817 ; the Beijing Municipal Science & Technology Commission , No. Z191100007219010 ; The Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Deutsche Forschungsgemeinschaft (DFG) under Germany's Excellence Strategy – EXC 2121 “Quantum Universe” – 390833306 ; the Lend{\"u}let (“Momentum”) Program and the J{\'a}nos Bolyai Research Scholarship of the Hungarian Academy of Sciences , the New National Excellence Program {\'U}NKP , the NKFIA research grants 123842 , 123959 , 124845 , 124850 , 125105 , 128713 , 128786 , and 129058 (Hungary); the Council of Science and Industrial Research , India; the HOMING PLUS program of the Foundation for Polish Science , cofinanced from European Union , Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education , the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428 , Opus 2014/13/B/ST2/02543 , 2014/15/B/ST2/03998 , and 2015/19/B/ST2/02861 , Sonata-bis 2012/07/E/ST2/01406 ; the National Priorities Research Program by Qatar National Research Fund ; the Ministry of Science and Higher Education , project no. 02.a03.21.0005 (Russia); the Tomsk Polytechnic University Competitiveness Enhancement Program; the Programa Estatal de Fomento de la Investigaci{\'o}n Cient{\'i}fica y T{\'e}cnica de Excelencia Mar{\'i}a de Maeztu , grant MDM-2015-0509 and the Programa Severo Ochoa del Principado de Asturias ; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship , Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Kavli Foundation ; the Nvidia Corporation; the SuperMicro Corporation; the Welch Foundation , contract C-1845 ; and the Weston Havens Foundation (USA). Publisher Copyright: {\textcopyright} 2021 The Author",
year = "2021",
month = may,
day = "10",
doi = "10.1016/j.physletb.2021.136253",
language = "English",
volume = "816",
journal = "Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics",
issn = "0370-2693",
publisher = "Elsevier",

}

RIS

TY - JOUR

T1 - Measurement of prompt D0 and D‾0 meson azimuthal anisotropy and search for strong electric fields in PbPb collisions at sNN=5.02TeV

AU - The CMS collaboration

AU - Sirunyan, A. M.

AU - Tumasyan, A.

AU - Adam, W.

AU - Ambrogi, F.

AU - Bergauer, T.

AU - Dragicevic, M.

AU - Erö, J.

AU - Escalante Del Valle, A.

AU - Frühwirth, R.

AU - Jeitler, M.

AU - Krammer, N.

AU - Lechner, L.

AU - Liko, D.

AU - Madlener, T.

AU - Mikulec, I.

AU - Rad, N.

AU - Schieck, J.

AU - Schöfbeck, R.

AU - Spanring, M.

AU - Templ, S.

AU - Waltenberger, W.

AU - Wulz, C. E.

AU - Zarucki, M.

AU - Chekhovsky, V.

AU - Litomin, A.

AU - Makarenko, V.

AU - Suarez Gonzalez, J.

AU - Darwish, M. R.

AU - De Wolf, E. A.

AU - Di Croce, D.

AU - Janssen, X.

AU - Kello, T.

AU - Lelek, A.

AU - Pieters, M.

AU - Rejeb Sfar, H.

AU - Van Haevermaet, H.

AU - Van Mechelen, P.

AU - Van Putte, S.

AU - Van Remortel, N.

AU - Blekman, F.

AU - Bols, E. S.

AU - Chhibra, S. S.

AU - D'Hondt, J.

AU - De Clercq, J.

AU - Lontkovskyi, D.

AU - Blinov, V.

AU - Dimova, T.

AU - Kardapoltsev, L.

AU - Ovtin, I.

AU - Skovpen, Y.

N1 - Funding Information: We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq , CAPES , FAPERJ , FAPERGS , and FAPESP (Brazil); MES (Bulgaria); CERN ; CAS , MOST , and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); MoER , ERC IUT , PUT and ERDF (Estonia); Academy of Finland , MEC , and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF , DFG , and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP , CINVESTAV , CONACYT , LNS , SEP , and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON , ROSATOM , RAS , RFBR , and NRC KI (Russia); MESTD (Serbia); SEIDI , CPAN , PCTI , and FEDER (Spain); MoSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter , IPST , STAR , and NSTDA (Thailand); TÜBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Funding Information: We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MOST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, PUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, ROSATOM, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MoSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); T?BITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract Nos. 675440, 752730, and 765710 (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation ? la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the ?Excellence of Science ? EOS? ? be.h project n. 30820817; the Beijing Municipal Science & Technology Commission, No. Z191100007219010; The Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Deutsche Forschungsgemeinschaft (DFG) under Germany's Excellence Strategy ? EXC 2121 ?Quantum Universe? ? 390833306; the Lend?let (?Momentum?) Program and the J?nos Bolyai Research Scholarship of the Hungarian Academy of Sciences, the New National Excellence Program ?NKP, the NKFIA research grants 123842, 123959, 124845, 124850, 125105, 128713, 128786, and 129058 (Hungary); the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Ministry of Science and Higher Education, project no. 02.a03.21.0005 (Russia); the Tomsk Polytechnic University Competitiveness Enhancement Program; the Programa Estatal de Fomento de la Investigaci?n Cient?fica y T?cnica de Excelencia Mar?a de Maeztu, grant MDM-2015-0509 and the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Kavli Foundation; the Nvidia Corporation; the SuperMicro Corporation; the Welch Foundation, contract C-1845; and the Weston Havens Foundation (USA). Funding Information: Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract Nos. 675440 , 752730 , and 765710 (European Union); the Leventis Foundation ; the A.P. Sloan Foundation ; the Alexander von Humboldt Foundation ; the Belgian Federal Science Policy Office ; the Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science – EOS” – be.h project n. 30820817 ; the Beijing Municipal Science & Technology Commission , No. Z191100007219010 ; The Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Deutsche Forschungsgemeinschaft (DFG) under Germany's Excellence Strategy – EXC 2121 “Quantum Universe” – 390833306 ; the Lendület (“Momentum”) Program and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences , the New National Excellence Program ÚNKP , the NKFIA research grants 123842 , 123959 , 124845 , 124850 , 125105 , 128713 , 128786 , and 129058 (Hungary); the Council of Science and Industrial Research , India; the HOMING PLUS program of the Foundation for Polish Science , cofinanced from European Union , Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education , the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428 , Opus 2014/13/B/ST2/02543 , 2014/15/B/ST2/03998 , and 2015/19/B/ST2/02861 , Sonata-bis 2012/07/E/ST2/01406 ; the National Priorities Research Program by Qatar National Research Fund ; the Ministry of Science and Higher Education , project no. 02.a03.21.0005 (Russia); the Tomsk Polytechnic University Competitiveness Enhancement Program; the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia María de Maeztu , grant MDM-2015-0509 and the Programa Severo Ochoa del Principado de Asturias ; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship , Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Kavli Foundation ; the Nvidia Corporation; the SuperMicro Corporation; the Welch Foundation , contract C-1845 ; and the Weston Havens Foundation (USA). Publisher Copyright: © 2021 The Author

PY - 2021/5/10

Y1 - 2021/5/10

N2 - The strong Coulomb field created in ultrarelativistic heavy ion collisions is expected to produce a rapidity-dependent difference (Δv2) in the second Fourier coefficient of the azimuthal distribution (elliptic flow, v2) between D0 (u‾c) and D‾0 (uc‾) mesons. Motivated by the search for evidence of this field, the CMS detector at the LHC is used to perform the first measurement of Δv2. The rapidity-averaged value is found to be 〈Δv2〉=0.001±0.001(stat)±0.003(syst) in PbPb collisions at sNN=5.02TeV. In addition, the influence of the collision geometry is explored by measuring the D0 and D‾0mesons v2 and triangular flow coefficient (v3) as functions of rapidity, transverse momentum (pT), and event centrality (a measure of the overlap of the two Pb nuclei). A clear centrality dependence of prompt D0 meson v2 values is observed, while the v3 is largely independent of centrality. These trends are consistent with expectations of flow driven by the initial-state geometry.

AB - The strong Coulomb field created in ultrarelativistic heavy ion collisions is expected to produce a rapidity-dependent difference (Δv2) in the second Fourier coefficient of the azimuthal distribution (elliptic flow, v2) between D0 (u‾c) and D‾0 (uc‾) mesons. Motivated by the search for evidence of this field, the CMS detector at the LHC is used to perform the first measurement of Δv2. The rapidity-averaged value is found to be 〈Δv2〉=0.001±0.001(stat)±0.003(syst) in PbPb collisions at sNN=5.02TeV. In addition, the influence of the collision geometry is explored by measuring the D0 and D‾0mesons v2 and triangular flow coefficient (v3) as functions of rapidity, transverse momentum (pT), and event centrality (a measure of the overlap of the two Pb nuclei). A clear centrality dependence of prompt D0 meson v2 values is observed, while the v3 is largely independent of centrality. These trends are consistent with expectations of flow driven by the initial-state geometry.

KW - Charm

KW - CMS

KW - Electromagnetic fields

KW - Heavy-flavor

UR - http://www.scopus.com/inward/record.url?scp=85106117663&partnerID=8YFLogxK

U2 - 10.1016/j.physletb.2021.136253

DO - 10.1016/j.physletb.2021.136253

M3 - Article

AN - SCOPUS:85106117663

VL - 816

JO - Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics

JF - Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics

SN - 0370-2693

M1 - 136253

ER -

ID: 34411011