Research output: Contribution to journal › Article › peer-review
Highly efficient electromagnetic emission during 100 keV electron beam relaxation in a thin magnetized plasma. / Annenkov, V. V.; Timofeev, I. V.; Volchok, E. P.
In: Physics of Plasmas, Vol. 26, No. 6, 063104, 01.06.2019.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Highly efficient electromagnetic emission during 100 keV electron beam relaxation in a thin magnetized plasma
AU - Annenkov, V. V.
AU - Timofeev, I. V.
AU - Volchok, E. P.
PY - 2019/6/1
Y1 - 2019/6/1
N2 - In this paper, electromagnetic emissions produced by a beam-plasma system are investigated using particle-in-cell simulations for the particular case when the typical transverse size of both the 100 keV electron beam and the produced plasma channel is comparable to the radiation wavelength. The interest in this regime of beam-plasma interaction is associated with highly efficient generation of electromagnetic waves near the plasma frequency harmonics that has been recently observed in laboratory experiments on the GOL-3 mirror trap. It has been found that the radiation power only from the vicinity of the doubled plasma frequency in these experiments can reach 1% of the total beam power. Subsequent theoretical and simulation studies have shown that the most likely candidate for explaining such efficient generation of electromagnetic radiation is the mechanism of a beam-driven plasma antenna based on the conversion of the most unstable plasma oscillations on a longitudinal density modulation of plasma ions. In this paper, we investigate how effectively this mechanism can work in a real experiment at the GOL-3 facility, when a thin subrelativistic electron beam gets a large angular spread due to compression by a magnetic field, and the gas into which it is injected has macroscopic density gradients.
AB - In this paper, electromagnetic emissions produced by a beam-plasma system are investigated using particle-in-cell simulations for the particular case when the typical transverse size of both the 100 keV electron beam and the produced plasma channel is comparable to the radiation wavelength. The interest in this regime of beam-plasma interaction is associated with highly efficient generation of electromagnetic waves near the plasma frequency harmonics that has been recently observed in laboratory experiments on the GOL-3 mirror trap. It has been found that the radiation power only from the vicinity of the doubled plasma frequency in these experiments can reach 1% of the total beam power. Subsequent theoretical and simulation studies have shown that the most likely candidate for explaining such efficient generation of electromagnetic radiation is the mechanism of a beam-driven plasma antenna based on the conversion of the most unstable plasma oscillations on a longitudinal density modulation of plasma ions. In this paper, we investigate how effectively this mechanism can work in a real experiment at the GOL-3 facility, when a thin subrelativistic electron beam gets a large angular spread due to compression by a magnetic field, and the gas into which it is injected has macroscopic density gradients.
KW - 2-STREAM INSTABILITY
KW - RADIATION
KW - TURBULENCE
UR - http://www.scopus.com/inward/record.url?scp=85067259548&partnerID=8YFLogxK
U2 - 10.1063/1.5086237
DO - 10.1063/1.5086237
M3 - Article
AN - SCOPUS:85067259548
VL - 26
JO - Physics of Plasmas
JF - Physics of Plasmas
SN - 1070-664X
IS - 6
M1 - 063104
ER -
ID: 20590688