Standard

Angle-Dependent Metasurface for Nonspectroscopic THz Sensing of Submicrometer Films. / Tumashov, Maksim A.; Baena, Juan D.; Del Risco, Juan P. et al.

In: IEEE Sensors Journal, Vol. 23, No. 22, 11.12.2023, p. 27262-27272.

Research output: Contribution to journalArticlepeer-review

Harvard

Tumashov, MA, Baena, JD, Del Risco, JP, Lazorskiy, PA, Glybovski, SB & Kuznetsov, SA 2023, 'Angle-Dependent Metasurface for Nonspectroscopic THz Sensing of Submicrometer Films', IEEE Sensors Journal, vol. 23, no. 22, pp. 27262-27272. https://doi.org/10.1109/JSEN.2023.3319955

APA

Tumashov, M. A., Baena, J. D., Del Risco, J. P., Lazorskiy, P. A., Glybovski, S. B., & Kuznetsov, S. A. (2023). Angle-Dependent Metasurface for Nonspectroscopic THz Sensing of Submicrometer Films. IEEE Sensors Journal, 23(22), 27262-27272. https://doi.org/10.1109/JSEN.2023.3319955

Vancouver

Tumashov MA, Baena JD, Del Risco JP, Lazorskiy PA, Glybovski SB, Kuznetsov SA. Angle-Dependent Metasurface for Nonspectroscopic THz Sensing of Submicrometer Films. IEEE Sensors Journal. 2023 Dec 11;23(22):27262-27272. doi: 10.1109/JSEN.2023.3319955

Author

Tumashov, Maksim A. ; Baena, Juan D. ; Del Risco, Juan P. et al. / Angle-Dependent Metasurface for Nonspectroscopic THz Sensing of Submicrometer Films. In: IEEE Sensors Journal. 2023 ; Vol. 23, No. 22. pp. 27262-27272.

BibTeX

@article{ac0fcb4666fa48899111677b9db867fe,
title = "Angle-Dependent Metasurface for Nonspectroscopic THz Sensing of Submicrometer Films",
abstract = "Efficient sensors for terahertz (THz) frequency range are in high demand for applications in biomedicine, chemistry, security, and electronics. Conventional thin-film sensing relies on spectroscopy, while improved sensitivity can be achieved using frequency selective electromagnetic metasurfaces. A simpler and innovative approach involves a nonspectroscopic method using a single-frequency THz source and an angle-dependent metasurface under oblique illumination. This method derives analyte parameters from the shift in the resonant transmission angle. We further develop this platform and investigate a new metasurface operating at 0.139 THz, exhibiting a strong variation of a narrow stopband with the angle of incidence. Theoretical, numerical, and experimental results demonstrate the metasurface{\textquoteright}s ability to detect submicron-thick films. The proposed nonspectroscopic sensing technique offers a promising avenue for highly efficient and sensitive detection of dielectric thin films.",
keywords = "Impedance, Metasurface, Metasurfaces, Mirrors, Resonant frequency, Sensors, Surface impedance, Surface waves, sensing, terahertz, thin-film, terahertz (THz), Metasurface (MS)",
author = "Tumashov, {Maksim A.} and Baena, {Juan D.} and {Del Risco}, {Juan P.} and Lazorskiy, {Pavel A.} and Glybovski, {Stanislav B.} and Kuznetsov, {Sergei A.}",
note = "Публикация для корректииовки.",
year = "2023",
month = dec,
day = "11",
doi = "10.1109/JSEN.2023.3319955",
language = "English",
volume = "23",
pages = "27262--27272",
journal = "IEEE Sensors Journal",
issn = "1530-437X",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
number = "22",

}

RIS

TY - JOUR

T1 - Angle-Dependent Metasurface for Nonspectroscopic THz Sensing of Submicrometer Films

AU - Tumashov, Maksim A.

AU - Baena, Juan D.

AU - Del Risco, Juan P.

AU - Lazorskiy, Pavel A.

AU - Glybovski, Stanislav B.

AU - Kuznetsov, Sergei A.

N1 - Публикация для корректииовки.

PY - 2023/12/11

Y1 - 2023/12/11

N2 - Efficient sensors for terahertz (THz) frequency range are in high demand for applications in biomedicine, chemistry, security, and electronics. Conventional thin-film sensing relies on spectroscopy, while improved sensitivity can be achieved using frequency selective electromagnetic metasurfaces. A simpler and innovative approach involves a nonspectroscopic method using a single-frequency THz source and an angle-dependent metasurface under oblique illumination. This method derives analyte parameters from the shift in the resonant transmission angle. We further develop this platform and investigate a new metasurface operating at 0.139 THz, exhibiting a strong variation of a narrow stopband with the angle of incidence. Theoretical, numerical, and experimental results demonstrate the metasurface’s ability to detect submicron-thick films. The proposed nonspectroscopic sensing technique offers a promising avenue for highly efficient and sensitive detection of dielectric thin films.

AB - Efficient sensors for terahertz (THz) frequency range are in high demand for applications in biomedicine, chemistry, security, and electronics. Conventional thin-film sensing relies on spectroscopy, while improved sensitivity can be achieved using frequency selective electromagnetic metasurfaces. A simpler and innovative approach involves a nonspectroscopic method using a single-frequency THz source and an angle-dependent metasurface under oblique illumination. This method derives analyte parameters from the shift in the resonant transmission angle. We further develop this platform and investigate a new metasurface operating at 0.139 THz, exhibiting a strong variation of a narrow stopband with the angle of incidence. Theoretical, numerical, and experimental results demonstrate the metasurface’s ability to detect submicron-thick films. The proposed nonspectroscopic sensing technique offers a promising avenue for highly efficient and sensitive detection of dielectric thin films.

KW - Impedance

KW - Metasurface

KW - Metasurfaces

KW - Mirrors

KW - Resonant frequency

KW - Sensors

KW - Surface impedance

KW - Surface waves

KW - sensing

KW - terahertz

KW - thin-film

KW - terahertz (THz)

KW - Metasurface (MS)

UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85174845690&origin=inward&txGid=efbeeb2e0cff82ce9414d73c96ab5ee9

UR - https://www.mendeley.com/catalogue/2eef0cb3-be41-3b1f-aad2-fb6413f53782/

U2 - 10.1109/JSEN.2023.3319955

DO - 10.1109/JSEN.2023.3319955

M3 - Article

VL - 23

SP - 27262

EP - 27272

JO - IEEE Sensors Journal

JF - IEEE Sensors Journal

SN - 1530-437X

IS - 22

ER -

ID: 59186994