Research output: Contribution to journal › Article › peer-review
Метод поиска структурной гетерогенности сайтов связывания транскрипционных факторов с использованием альтернативных de novo моделей на примере FOXA2. / Tsukanov, A. V.; Levitsky, V. G.; Merkulova, T. I.
In: Vavilovskii Zhurnal Genetiki i Selektsii, Vol. 25, No. 1, 1, 02.2021, p. 7-17.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Метод поиска структурной гетерогенности сайтов связывания транскрипционных факторов с использованием альтернативных de novo моделей на примере FOXA2
AU - Tsukanov, A. V.
AU - Levitsky, V. G.
AU - Merkulova, T. I.
N1 - Цуканов А.В., Левицкий В.Г., Меркулова Т.И. Метод поиска структурной гетерогенности сайтов связывания транскрипционных факторов с использованием альтернативных de novo моделей на примере FOXA2 // Вавиловский журнал генетики и селекции. - 2021. - Т. 25. - № 1. - С. 7-17
PY - 2021/2
Y1 - 2021/2
N2 - В настоящее время самой распространенной моделью поиска сайтов связывания транскрипционных факторов (ССТФ) в пиках ChIP-seq является позиционная весовая матрица (position weight matrix, PWM). Но эта модель не учитывает взаимосвязи между частотами встреч нуклеотидов в разных позициях ССТФ, поэтому не способна гарантировать определение всех возможных структурных вариантов ССТФ. На сегодняшний день уже предложены альтернативные модели, например BaMM и InMoDe, которые учитывают такие взаимосвязи. Однако применение этих моделей обычно сводилось к сравнению их точности с точностью традиционной модели PWM, тогда как анализ совместной встречаемости и относительного расположения ССТФ разных моделей в пиках не производился. В нашей работе мы предлагаем конвейер программ MultiDeNA, позволяющий сочетать разные модели de novo поиска ССТФ для выявления структурной гетерогенности ССТФ в данных ChIP-seq. Разработанный конвейер включает этапы построения моделей на основе заданного набора пиков, оценки точности распознавания моделей с помощью перекрестных тестов, выбора порогов, сканирования пиков ChIP-seq и классификацию пиков по результатам сканирования. С применением конвейера нами проведен анализ 22 экспериментов ChIP-seq для ТФ FOXA2 с помощью четырех моделей: PWM, diPWM, BaMM и InMoDe. Показано, что сочетание моделей позволяет существенно увеличить общее количество распознанных пиков (на 26.3 %) по сравнению с применением только PWM; при этом основной вклад в распознавание внесла модель BaMM. В значительной доле пиков разные модели распознают совпадающие ССТФ; однако для моделей PWM, diPWM, BaMM и InMoDe медианы доли пиков, которые содержали ССТФ только одной модели, составили 1.08, 0.49, 4.15 и 1.73 % соответственно. Таким образом, совокупность ССТФ FOXA2 не описывается полностью только одной моделью, что свидетельствует о наличии структурной гетерогенности в ССТФ у FOXA2.
AB - В настоящее время самой распространенной моделью поиска сайтов связывания транскрипционных факторов (ССТФ) в пиках ChIP-seq является позиционная весовая матрица (position weight matrix, PWM). Но эта модель не учитывает взаимосвязи между частотами встреч нуклеотидов в разных позициях ССТФ, поэтому не способна гарантировать определение всех возможных структурных вариантов ССТФ. На сегодняшний день уже предложены альтернативные модели, например BaMM и InMoDe, которые учитывают такие взаимосвязи. Однако применение этих моделей обычно сводилось к сравнению их точности с точностью традиционной модели PWM, тогда как анализ совместной встречаемости и относительного расположения ССТФ разных моделей в пиках не производился. В нашей работе мы предлагаем конвейер программ MultiDeNA, позволяющий сочетать разные модели de novo поиска ССТФ для выявления структурной гетерогенности ССТФ в данных ChIP-seq. Разработанный конвейер включает этапы построения моделей на основе заданного набора пиков, оценки точности распознавания моделей с помощью перекрестных тестов, выбора порогов, сканирования пиков ChIP-seq и классификацию пиков по результатам сканирования. С применением конвейера нами проведен анализ 22 экспериментов ChIP-seq для ТФ FOXA2 с помощью четырех моделей: PWM, diPWM, BaMM и InMoDe. Показано, что сочетание моделей позволяет существенно увеличить общее количество распознанных пиков (на 26.3 %) по сравнению с применением только PWM; при этом основной вклад в распознавание внесла модель BaMM. В значительной доле пиков разные модели распознают совпадающие ССТФ; однако для моделей PWM, diPWM, BaMM и InMoDe медианы доли пиков, которые содержали ССТФ только одной модели, составили 1.08, 0.49, 4.15 и 1.73 % соответственно. Таким образом, совокупность ССТФ FOXA2 не описывается полностью только одной моделью, что свидетельствует о наличии структурной гетерогенности в ССТФ у FOXA2.
KW - ChIP-seq
KW - Heterogeneity of TFBS
KW - TFBS de novo searching
KW - Transcription factor binding sites (TFBS)
UR - http://www.scopus.com/inward/record.url?scp=85103771368&partnerID=8YFLogxK
UR - https://elibrary.ru/item.asp?id=44831853
U2 - 10.18699/VJ21.002
DO - 10.18699/VJ21.002
M3 - статья
C2 - 34547062
AN - SCOPUS:85103771368
VL - 25
SP - 7
EP - 17
JO - Вавиловский журнал генетики и селекции
JF - Вавиловский журнал генетики и селекции
SN - 2500-0462
IS - 1
M1 - 1
ER -
ID: 28319000