Research output: Chapter in Book/Report/Conference proceeding › Conference contribution › Research › peer-review
Изучение поверхностных разрывов палеоземлетрясений методом георадиолокации (на материале Курайской разломной зоны). / Bricheva, S. S.; Deev, E. V.; Dubrovin, I. O. et al.
Engineering and Mining Geophysics 2020. European Association of Geoscientists and Engineers, EAGE, 2020. (Engineering and Mining Geophysics 2020).Research output: Chapter in Book/Report/Conference proceeding › Conference contribution › Research › peer-review
}
TY - GEN
T1 - Изучение поверхностных разрывов палеоземлетрясений методом георадиолокации (на материале Курайской разломной зоны)
AU - Bricheva, S. S.
AU - Deev, E. V.
AU - Dubrovin, I. O.
AU - Doroshenkov, M. M.
AU - Panin, A. V.
AU - Turova, I. V.
AU - Entin, A. L.
N1 - Авторы благодарят Курбанова Реджепа Нурмурадовича за помощь в проведении полевых работ. Георадарные исследования разломных уступов, а также анализ их морфологии с использованием геодезического оборудования и квадрокоптера выполнены в рамках проекта РНФ № 19-17-00179. Палеосейсмологические исследования были выполнены в рамках проектов РФФИ №18-05-00389 и № 18-35-00280.
PY - 2020/9/14
Y1 - 2020/9/14
N2 - Geophysical methods in paleoseismology enable scientists to quickly determine shallow stratigraphy; to identify displaced, oblique layers within the fault zone; to visualize faults to a great depth and to locate trenching sites. Ground-penetrating radar (GPR) data are routinely used for such investigations. Resulting interpretation is based on subjective analyses of different and complex reflection patterns. The objective set of signs that characterize the faults on GPR profiles still does not exist. In this study we carried out GPR measurements to detect major discontinuities at several sites in Kurai fault zone - one of the most potentially earthquake-prone areas in the Altai Mountains. We used “Python-3” GPR system with 38, 50 and 100 MHz antenna units. The reflections and specific wave patterns detected on processed GPR profiles were interpreted using trenching data. Then we used the open-source modeling tool gprMax to calculate synthetic GPR data for a sequence of numerical fault models, based on trenching information. We find out which signs of fault in sediments we could detect on GPR data, and what is beyond its capabilities.
AB - Geophysical methods in paleoseismology enable scientists to quickly determine shallow stratigraphy; to identify displaced, oblique layers within the fault zone; to visualize faults to a great depth and to locate trenching sites. Ground-penetrating radar (GPR) data are routinely used for such investigations. Resulting interpretation is based on subjective analyses of different and complex reflection patterns. The objective set of signs that characterize the faults on GPR profiles still does not exist. In this study we carried out GPR measurements to detect major discontinuities at several sites in Kurai fault zone - one of the most potentially earthquake-prone areas in the Altai Mountains. We used “Python-3” GPR system with 38, 50 and 100 MHz antenna units. The reflections and specific wave patterns detected on processed GPR profiles were interpreted using trenching data. Then we used the open-source modeling tool gprMax to calculate synthetic GPR data for a sequence of numerical fault models, based on trenching information. We find out which signs of fault in sediments we could detect on GPR data, and what is beyond its capabilities.
UR - http://www.scopus.com/inward/record.url?scp=85099694284&partnerID=8YFLogxK
UR - https://www.elibrary.ru/item.asp?id=44572530
U2 - 10.3997/2214-4609.202051072
DO - 10.3997/2214-4609.202051072
M3 - статья в сборнике материалов конференции
AN - SCOPUS:85099694284
T3 - Engineering and Mining Geophysics 2020
BT - Engineering and Mining Geophysics 2020
PB - European Association of Geoscientists and Engineers, EAGE
T2 - Engineering and Mining Geophysics 2020
Y2 - 14 September 2020 through 18 September 2020
ER -
ID: 27641552