Standard

二氧化碳水合物-石蜡段塞的结构, 组分及特性. / Skiba, Sergey; Sagidullin, Aleksey; Shapovalova, Alexandra et al.

In: Shiyou Kantan Yu Kaifa/Petroleum Exploration and Development, Vol. 48, No. 6, 23.12.2021, p. 1269-1275.

Research output: Contribution to journalArticlepeer-review

Harvard

Skiba, S, Sagidullin, A, Shapovalova, A, Strelets, L & Manakov, A 2021, '二氧化碳水合物-石蜡段塞的结构, 组分及特性', Shiyou Kantan Yu Kaifa/Petroleum Exploration and Development, vol. 48, no. 6, pp. 1269-1275. https://doi.org/10.11698/PED.2021.06.19

APA

Skiba, S., Sagidullin, A., Shapovalova, A., Strelets, L., & Manakov, A. (2021). 二氧化碳水合物-石蜡段塞的结构, 组分及特性. Shiyou Kantan Yu Kaifa/Petroleum Exploration and Development, 48(6), 1269-1275. https://doi.org/10.11698/PED.2021.06.19

Vancouver

Skiba S, Sagidullin A, Shapovalova A, Strelets L, Manakov A. 二氧化碳水合物-石蜡段塞的结构, 组分及特性. Shiyou Kantan Yu Kaifa/Petroleum Exploration and Development. 2021 Dec 23;48(6):1269-1275. doi: 10.11698/PED.2021.06.19

Author

Skiba, Sergey ; Sagidullin, Aleksey ; Shapovalova, Alexandra et al. / 二氧化碳水合物-石蜡段塞的结构, 组分及特性. In: Shiyou Kantan Yu Kaifa/Petroleum Exploration and Development. 2021 ; Vol. 48, No. 6. pp. 1269-1275.

BibTeX

@article{0df87a3405be4885b82b4554a26dd5ab,
title = "二氧化碳水合物-石蜡段塞的结构, 组分及特性",
abstract = "Gas hydrates and wax are the major flow assurance problems for the transportation of produced hydrocarbons through pipelines. However, in most research works both these two problems are studied separately. Although simultaneous precipitation or deposition of these compounds in pipelines can lead to different mitigation/prevention strategies, the investigations in which both these problems are considered simultaneously appeared only recently. There is no information in the literature on the texture/composition and features of decomposition process of mixed wax/hydrate plugs. At the same time, this information could be useful to understand how to treat the problem of formation of these plugs. In this work, three wax/gas hydrate plugs were collected at quasi-static conditions from a water-in-oil emulsion to study their texture, composition and the features of decomposition process. Powder X-ray diffraction and IR (infrared spectroscopy) analyses showed that the plugs consisted of wax and gas hydrate. Thermovolumetric and DSC (Differential Scanning Calorimetry) experiments showed that the main part of gas hydrate in the plugs at the ambient pressure started to decompose at about 268 K. This temperature was higher than the equilibrium temperature of carbon dioxide hydrate at this pressure, indicating that the gas hydrate in the plugs could be effectively preserved at temperatures below the ice melting point (273.2 K). It was found through observation of the hydrate decomposition process in the plugs under the microscope that the gas in the samples released in small bubbles, while the hydrate particles were not visible at this magnification, indicating that the hydrate was indeed highly dispersed in the samples. A residual wax was jelly-like after decomposition of hydrate in all the cases. Rheological experiments showed that the plugs residues after decomposition of the hydrates had higher yield points and viscosities than the initial waxy crude oil originally used for the experiments.",
keywords = "Carbon dioxide hydrate, Hydrate decomposition, Hydrate/wax plug, Plug texture",
author = "Sergey Skiba and Aleksey Sagidullin and Alexandra Shapovalova and Larisa Strelets and Andrey Manakov",
note = "Publisher Copyright: {\textcopyright} 2021, The Editorial Board of Petroleum Exploration and Development. All right reserved.",
year = "2021",
month = dec,
day = "23",
doi = "10.11698/PED.2021.06.19",
language = "Китайский (традиционный)",
volume = "48",
pages = "1269--1275",
journal = "Shiyou Kantan Yu Kaifa/Petroleum Exploration and Development",
issn = "1000-0747",
publisher = "Elsevier Science B.V.",
number = "6",

}

RIS

TY - JOUR

T1 - 二氧化碳水合物-石蜡段塞的结构, 组分及特性

AU - Skiba, Sergey

AU - Sagidullin, Aleksey

AU - Shapovalova, Alexandra

AU - Strelets, Larisa

AU - Manakov, Andrey

N1 - Publisher Copyright: © 2021, The Editorial Board of Petroleum Exploration and Development. All right reserved.

PY - 2021/12/23

Y1 - 2021/12/23

N2 - Gas hydrates and wax are the major flow assurance problems for the transportation of produced hydrocarbons through pipelines. However, in most research works both these two problems are studied separately. Although simultaneous precipitation or deposition of these compounds in pipelines can lead to different mitigation/prevention strategies, the investigations in which both these problems are considered simultaneously appeared only recently. There is no information in the literature on the texture/composition and features of decomposition process of mixed wax/hydrate plugs. At the same time, this information could be useful to understand how to treat the problem of formation of these plugs. In this work, three wax/gas hydrate plugs were collected at quasi-static conditions from a water-in-oil emulsion to study their texture, composition and the features of decomposition process. Powder X-ray diffraction and IR (infrared spectroscopy) analyses showed that the plugs consisted of wax and gas hydrate. Thermovolumetric and DSC (Differential Scanning Calorimetry) experiments showed that the main part of gas hydrate in the plugs at the ambient pressure started to decompose at about 268 K. This temperature was higher than the equilibrium temperature of carbon dioxide hydrate at this pressure, indicating that the gas hydrate in the plugs could be effectively preserved at temperatures below the ice melting point (273.2 K). It was found through observation of the hydrate decomposition process in the plugs under the microscope that the gas in the samples released in small bubbles, while the hydrate particles were not visible at this magnification, indicating that the hydrate was indeed highly dispersed in the samples. A residual wax was jelly-like after decomposition of hydrate in all the cases. Rheological experiments showed that the plugs residues after decomposition of the hydrates had higher yield points and viscosities than the initial waxy crude oil originally used for the experiments.

AB - Gas hydrates and wax are the major flow assurance problems for the transportation of produced hydrocarbons through pipelines. However, in most research works both these two problems are studied separately. Although simultaneous precipitation or deposition of these compounds in pipelines can lead to different mitigation/prevention strategies, the investigations in which both these problems are considered simultaneously appeared only recently. There is no information in the literature on the texture/composition and features of decomposition process of mixed wax/hydrate plugs. At the same time, this information could be useful to understand how to treat the problem of formation of these plugs. In this work, three wax/gas hydrate plugs were collected at quasi-static conditions from a water-in-oil emulsion to study their texture, composition and the features of decomposition process. Powder X-ray diffraction and IR (infrared spectroscopy) analyses showed that the plugs consisted of wax and gas hydrate. Thermovolumetric and DSC (Differential Scanning Calorimetry) experiments showed that the main part of gas hydrate in the plugs at the ambient pressure started to decompose at about 268 K. This temperature was higher than the equilibrium temperature of carbon dioxide hydrate at this pressure, indicating that the gas hydrate in the plugs could be effectively preserved at temperatures below the ice melting point (273.2 K). It was found through observation of the hydrate decomposition process in the plugs under the microscope that the gas in the samples released in small bubbles, while the hydrate particles were not visible at this magnification, indicating that the hydrate was indeed highly dispersed in the samples. A residual wax was jelly-like after decomposition of hydrate in all the cases. Rheological experiments showed that the plugs residues after decomposition of the hydrates had higher yield points and viscosities than the initial waxy crude oil originally used for the experiments.

KW - Carbon dioxide hydrate

KW - Hydrate decomposition

KW - Hydrate/wax plug

KW - Plug texture

UR - http://www.scopus.com/inward/record.url?scp=85122128332&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/ef1864a5-9edc-3789-ad2a-2ee21b16505f/

U2 - 10.11698/PED.2021.06.19

DO - 10.11698/PED.2021.06.19

M3 - статья

AN - SCOPUS:85122128332

VL - 48

SP - 1269

EP - 1275

JO - Shiyou Kantan Yu Kaifa/Petroleum Exploration and Development

JF - Shiyou Kantan Yu Kaifa/Petroleum Exploration and Development

SN - 1000-0747

IS - 6

ER -

ID: 35200349