Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Wiener index of edge thorny graphs of catacondensed benzenoids. / Dobrynin, Andrey A.; Iranmanesh, Ali.
в: Mathematics, Том 8, № 4, 467, 01.04.2020.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Wiener index of edge thorny graphs of catacondensed benzenoids
AU - Dobrynin, Andrey A.
AU - Iranmanesh, Ali
N1 - Publisher Copyright: © 2020 by the authors. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/4/1
Y1 - 2020/4/1
N2 - The Wiener index is a topological index of a molecular graph, defined as the sum of distances between all pairs of its vertices. Benzenoid graphs include molecular graphs of polycyclic aromatic hydrocarbons. An edge thorny graph G is constructed from a catacondensed benzenoid graph H by attaching new graphs to edges of a perfect matching of H. A formula for the Wiener index of G is derived. The index of the resulting graph does not contain distance characteristics of elements of H and depends on theWiener index of H and distance properties of the attached graphs.
AB - The Wiener index is a topological index of a molecular graph, defined as the sum of distances between all pairs of its vertices. Benzenoid graphs include molecular graphs of polycyclic aromatic hydrocarbons. An edge thorny graph G is constructed from a catacondensed benzenoid graph H by attaching new graphs to edges of a perfect matching of H. A formula for the Wiener index of G is derived. The index of the resulting graph does not contain distance characteristics of elements of H and depends on theWiener index of H and distance properties of the attached graphs.
KW - Benzenoid graph
KW - Thorny graph
KW - Wiener index
KW - benzenoid graph
KW - TREES
KW - thorny graph
KW - wiener index
UR - http://www.scopus.com/inward/record.url?scp=85084457769&partnerID=8YFLogxK
U2 - 10.3390/math8040467
DO - 10.3390/math8040467
M3 - Article
AN - SCOPUS:85084457769
VL - 8
JO - Mathematics
JF - Mathematics
SN - 2227-7390
IS - 4
M1 - 467
ER -
ID: 24281335