Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Volumes of two-bridge cone manifolds in spaces of constant curvature. / Mednykh, A. D.
в: Transformation Groups, Том 26, № 2, 06.2021, стр. 601-629.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Volumes of two-bridge cone manifolds in spaces of constant curvature
AU - Mednykh, A. D.
N1 - Funding Information: The research was supported by the Laboratory of Topology and Dynamics, Novosibirsk State University (Contract No. 14.Y26.31.0025). Publisher Copyright: © 2020, Springer Science+Business Media, LLC, part of Springer Nature. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2021/6
Y1 - 2021/6
N2 - We investigate the existence of hyperbolic, spherical or Euclidean structure on cone-manifolds whose underlying space is the three-dimensional sphere and singular set is a given two-bridge knot. For two-bridge knots with not more than 7 crossings we present trigonometrical identities involving the lengths of singular geodesics and cone angles of such cone-manifolds. Then these identities are used to produce exact integral formulae for the volume of the corresponding cone-manifold modeled in the hyperbolic, spherical and Euclidean geometries.
AB - We investigate the existence of hyperbolic, spherical or Euclidean structure on cone-manifolds whose underlying space is the three-dimensional sphere and singular set is a given two-bridge knot. For two-bridge knots with not more than 7 crossings we present trigonometrical identities involving the lengths of singular geodesics and cone angles of such cone-manifolds. Then these identities are used to produce exact integral formulae for the volume of the corresponding cone-manifold modeled in the hyperbolic, spherical and Euclidean geometries.
KW - HYPERBOLIC STRUCTURES
KW - PERSONAL ACCOUNT
KW - KNOTS
KW - 3-MANIFOLDS
KW - INVARIANTS
KW - DISCOVERY
KW - COVERINGS
UR - http://www.scopus.com/inward/record.url?scp=85096541189&partnerID=8YFLogxK
U2 - 10.1007/s00031-020-09632-x
DO - 10.1007/s00031-020-09632-x
M3 - Article
AN - SCOPUS:85096541189
VL - 26
SP - 601
EP - 629
JO - Transformation Groups
JF - Transformation Groups
SN - 1083-4362
IS - 2
ER -
ID: 26140330