Standard

Volume Estimates for Right-Angled Hyperbolic Polyhedra. / Egorov, Andrey; Vesnin, Andrei.

в: Rendiconti dell'Istituto di Matematica dell'Universita di Trieste, Том 52, 2020, стр. 565-576.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Egorov, A & Vesnin, A 2020, 'Volume Estimates for Right-Angled Hyperbolic Polyhedra', Rendiconti dell'Istituto di Matematica dell'Universita di Trieste, Том. 52, стр. 565-576. https://doi.org/10.13137/2464-8728/30958

APA

Egorov, A., & Vesnin, A. (2020). Volume Estimates for Right-Angled Hyperbolic Polyhedra. Rendiconti dell'Istituto di Matematica dell'Universita di Trieste, 52, 565-576. https://doi.org/10.13137/2464-8728/30958

Vancouver

Egorov A, Vesnin A. Volume Estimates for Right-Angled Hyperbolic Polyhedra. Rendiconti dell'Istituto di Matematica dell'Universita di Trieste. 2020;52:565-576. doi: 10.13137/2464-8728/30958

Author

Egorov, Andrey ; Vesnin, Andrei. / Volume Estimates for Right-Angled Hyperbolic Polyhedra. в: Rendiconti dell'Istituto di Matematica dell'Universita di Trieste. 2020 ; Том 52. стр. 565-576.

BibTeX

@article{169237a9b93d4a8181e4e779f0565924,
title = "Volume Estimates for Right-Angled Hyperbolic Polyhedra",
abstract = "By Andreev theorem acute-angled polyhedra of finite vo-lume in a hyperbolic space (Formula presented)3are uniquely determined by combinatorics of their 1-skeletons and dihedral angles. For a class of compact right-angled polyhedra and a class of ideal right-angled polyhedra estimates of volumes in terms of the number of vertices were obtained by Atkin-son in 2009. In the present paper upper estimates for both classes are improved.",
keywords = "hyperbolic volume, ideal polyhedron, right-angled polyhedron",
author = "Andrey Egorov and Andrei Vesnin",
note = "Funding Information: The work was supported by the Theoretical Physics and Mathematics Advancement Foundation “BASIS”. Funding Information: The work was supported by the Theoretical Physics and Mathematics Advance-ment Foundation ?BASIS?. Publisher Copyright: {\textcopyright} 2020. All Rights Reserved. Copyright: Copyright 2021 Elsevier B.V., All rights reserved.",
year = "2020",
doi = "10.13137/2464-8728/30958",
language = "English",
volume = "52",
pages = "565--576",
journal = "Rendiconti dell'Istituto di Matematica dell'Universita di Trieste",
issn = "0049-4704",
publisher = "Istituto di matematica, Universita di Trieste",

}

RIS

TY - JOUR

T1 - Volume Estimates for Right-Angled Hyperbolic Polyhedra

AU - Egorov, Andrey

AU - Vesnin, Andrei

N1 - Funding Information: The work was supported by the Theoretical Physics and Mathematics Advancement Foundation “BASIS”. Funding Information: The work was supported by the Theoretical Physics and Mathematics Advance-ment Foundation ?BASIS?. Publisher Copyright: © 2020. All Rights Reserved. Copyright: Copyright 2021 Elsevier B.V., All rights reserved.

PY - 2020

Y1 - 2020

N2 - By Andreev theorem acute-angled polyhedra of finite vo-lume in a hyperbolic space (Formula presented)3are uniquely determined by combinatorics of their 1-skeletons and dihedral angles. For a class of compact right-angled polyhedra and a class of ideal right-angled polyhedra estimates of volumes in terms of the number of vertices were obtained by Atkin-son in 2009. In the present paper upper estimates for both classes are improved.

AB - By Andreev theorem acute-angled polyhedra of finite vo-lume in a hyperbolic space (Formula presented)3are uniquely determined by combinatorics of their 1-skeletons and dihedral angles. For a class of compact right-angled polyhedra and a class of ideal right-angled polyhedra estimates of volumes in terms of the number of vertices were obtained by Atkin-son in 2009. In the present paper upper estimates for both classes are improved.

KW - hyperbolic volume

KW - ideal polyhedron

KW - right-angled polyhedron

UR - http://www.scopus.com/inward/record.url?scp=85108694417&partnerID=8YFLogxK

U2 - 10.13137/2464-8728/30958

DO - 10.13137/2464-8728/30958

M3 - Article

AN - SCOPUS:85108694417

VL - 52

SP - 565

EP - 576

JO - Rendiconti dell'Istituto di Matematica dell'Universita di Trieste

JF - Rendiconti dell'Istituto di Matematica dell'Universita di Trieste

SN - 0049-4704

ER -

ID: 29124525