Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
VIRTUAL BRAIDS AND CLUSTER ALGEBRAS. / Егоров, Андрей Александрович.
в: Вестник Томского государственного университета. Математика и механика, Том 91, 2024, стр. 18-30.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - VIRTUAL BRAIDS AND CLUSTER ALGEBRAS
AU - Егоров, Андрей Александрович
N1 - Egorov, A. A. Virtual braids and cluster algebras / A. A. Egorov // Tomsk State University Journal of Mathematics and Mechanics. – 2024. – No. 91. – P. 18-30. – DOI 10.17223/19988621/91/2.
PY - 2024
Y1 - 2024
N2 - In 2015, Hikami and Inoue constructed a representation of the braid group Bn in terms of cluster algebra associated with the decomposition of the complement of the corresponding knot into ideal hyperbolic tetrahedra. This representation leads to the calculation of the hyperbolic volume of the complement of the knot that is the closure of the corresponding braid. In this paper, based on the Hikami-Inoue representation discussed above, we construct a representation for the virtual braid group VBn. We show that the so-called “forbidden relations” do not hold in the image of the resulting representation. In addition, based on the developed method, we construct representations for the flat braid group FBn and the flat virtual braid group FVBn.
AB - In 2015, Hikami and Inoue constructed a representation of the braid group Bn in terms of cluster algebra associated with the decomposition of the complement of the corresponding knot into ideal hyperbolic tetrahedra. This representation leads to the calculation of the hyperbolic volume of the complement of the knot that is the closure of the corresponding braid. In this paper, based on the Hikami-Inoue representation discussed above, we construct a representation for the virtual braid group VBn. We show that the so-called “forbidden relations” do not hold in the image of the resulting representation. In addition, based on the developed method, we construct representations for the flat braid group FBn and the flat virtual braid group FVBn.
KW - BRAID GROUP
KW - CLUSTER ALGEBRA
KW - VIRTUAL BRAID GROUP
UR - https://www.elibrary.ru/item.asp?id=74920365
U2 - 10.17223/19988621/91/2
DO - 10.17223/19988621/91/2
M3 - Article
VL - 91
SP - 18
EP - 30
JO - Вестник Томского государственного университета. Математика и механика
JF - Вестник Томского государственного университета. Математика и механика
SN - 1998-8621
ER -
ID: 67756772