Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
Verification of kinetic schemes of hydrogen ignition and combustion in air. / Fedorov, A. V.; Fedorova, N. N.; Vankova, O. S. и др.
XV All-Russian Seminar "Dynamics of Multiphase Media", DMM 2017. ред. / Fomin. Том 1939 American Institute of Physics Inc., 2018. 020019 (AIP Conference Proceedings; Том 1939).Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
}
TY - GEN
T1 - Verification of kinetic schemes of hydrogen ignition and combustion in air
AU - Fedorov, A. V.
AU - Fedorova, N. N.
AU - Vankova, O. S.
AU - Tropin, D. A.
PY - 2018/3/28
Y1 - 2018/3/28
N2 - Three chemical kinetic models for hydrogen combustion in oxygen and three gas-dynamic models for reactive mixture flow behind the initiating SW front were analyzed. The calculated results were compared with experimental data on the dependences of the ignition delay on the temperature and the dilution of the mixture with argon or nitrogen. Based on detailed kinetic mechanisms of nonequilibrium chemical transformations, a mathematical technique for describing the ignition and combustion of hydrogen in air was developed using the ANSYS Fluent code. The problem of ignition of a hydrogen jet fed coaxially into supersonic flow was solved numerically. The calculations were carried out using the Favre-averaged Navier-Stokes equations for a multi-species gas taking into account chemical reactions combined with the k-ω SST turbulence model. The problem was solved in several steps. In the first step, verification of the calculated and experimental data for the three kinetic schemes was performed without considering the conicity of the flow. In the second step, parametric calculations were performed to determine the influence of the conicity of the flow on the mixing and ignition of hydrogen in air using a kinetic scheme consisting of 38 reactions. Three conical supersonic nozzles for a Mach number M = 2 with different expansion angles β = 4°, 4.5°, and 5° were considered.
AB - Three chemical kinetic models for hydrogen combustion in oxygen and three gas-dynamic models for reactive mixture flow behind the initiating SW front were analyzed. The calculated results were compared with experimental data on the dependences of the ignition delay on the temperature and the dilution of the mixture with argon or nitrogen. Based on detailed kinetic mechanisms of nonequilibrium chemical transformations, a mathematical technique for describing the ignition and combustion of hydrogen in air was developed using the ANSYS Fluent code. The problem of ignition of a hydrogen jet fed coaxially into supersonic flow was solved numerically. The calculations were carried out using the Favre-averaged Navier-Stokes equations for a multi-species gas taking into account chemical reactions combined with the k-ω SST turbulence model. The problem was solved in several steps. In the first step, verification of the calculated and experimental data for the three kinetic schemes was performed without considering the conicity of the flow. In the second step, parametric calculations were performed to determine the influence of the conicity of the flow on the mixing and ignition of hydrogen in air using a kinetic scheme consisting of 38 reactions. Three conical supersonic nozzles for a Mach number M = 2 with different expansion angles β = 4°, 4.5°, and 5° were considered.
KW - SHOCK-TUBE
UR - http://www.scopus.com/inward/record.url?scp=85045143377&partnerID=8YFLogxK
U2 - 10.1063/1.5027331
DO - 10.1063/1.5027331
M3 - Conference contribution
AN - SCOPUS:85045143377
VL - 1939
T3 - AIP Conference Proceedings
BT - XV All-Russian Seminar "Dynamics of Multiphase Media", DMM 2017
A2 - Fomin, null
PB - American Institute of Physics Inc.
T2 - 15th All-Russian Seminar on Dynamics of Multiphase Media, DMM 2017
Y2 - 3 October 2017 through 5 October 2017
ER -
ID: 12438972