Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Using maximum cross section method for filtering jump-diffusion random processes. / Averina, Tatyana A.; Rybakov, Konstantin A.
в: Russian Journal of Numerical Analysis and Mathematical Modelling, Том 35, № 2, 01.04.2020, стр. 55-67.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Using maximum cross section method for filtering jump-diffusion random processes
AU - Averina, Tatyana A.
AU - Rybakov, Konstantin A.
PY - 2020/4/1
Y1 - 2020/4/1
N2 - The paper is focused on problem of filtering random processes in dynamical systems whose mathematical models are described by stochastic differential equations with a Poisson component. The solution of a filtering problem supposes simulation of trajectories of solutions to a stochastic differential equation. The trajectory modelling procedure includes simulation of a Poisson flow permitting application of the maximum cross section method and its modification.
AB - The paper is focused on problem of filtering random processes in dynamical systems whose mathematical models are described by stochastic differential equations with a Poisson component. The solution of a filtering problem supposes simulation of trajectories of solutions to a stochastic differential equation. The trajectory modelling procedure includes simulation of a Poisson flow permitting application of the maximum cross section method and its modification.
KW - estimation
KW - filtering
KW - maximum cross section method
KW - particle filter
KW - particle method
KW - statistical modelling
KW - Stochastic differential equation with jumps
UR - http://www.scopus.com/inward/record.url?scp=85084728278&partnerID=8YFLogxK
U2 - 10.1515/rnam-2020-0005
DO - 10.1515/rnam-2020-0005
M3 - Article
AN - SCOPUS:85084728278
VL - 35
SP - 55
EP - 67
JO - Russian Journal of Numerical Analysis and Mathematical Modelling
JF - Russian Journal of Numerical Analysis and Mathematical Modelling
SN - 0927-6467
IS - 2
ER -
ID: 24313763