Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Upper Bounds for Volumes of Generalized Hyperbolic Polyhedra and Hyperbolic Links. / Vesnin, A. Yu; Egorov, A. A.
в: Siberian Mathematical Journal, Том 65, № 3, 05.2024, стр. 534-551.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Upper Bounds for Volumes of Generalized Hyperbolic Polyhedra and Hyperbolic Links
AU - Vesnin, A. Yu
AU - Egorov, A. A.
N1 - The research was supported by the Theoretical Physics and Mathematics Advancement Foundation “BASIS” and the State Task to the Sobolev Institute of Mathematics (Project FWNF–2022–0004)
PY - 2024/5
Y1 - 2024/5
N2 - Call a polyhedron in a three-dimensional hyperbolic spacegeneralized if finite, ideal, and truncated vertices are admitted.By Belletti’s theorem of 2021 the exact upper bound for the volumesof generalized hyperbolic polyhedra with the same one-dimensional skeleton equals the volume of an ideal right-angled hyperbolic polyhedronwhose one-dimensional skeleton is the medial graph for.We give the upper bounds for the volume ofan arbitrary generalized hyperbolic polyhedronsuch that the bounds depend linearly onthe number of edges. Moreover, we show that the bounds can be improvedif the polyhedron has triangular faces and trivalent vertices.As application we obtain some new upper bounds for the volumeof the complement of the hyperbolic link with more than eight twists in a diagram.
AB - Call a polyhedron in a three-dimensional hyperbolic spacegeneralized if finite, ideal, and truncated vertices are admitted.By Belletti’s theorem of 2021 the exact upper bound for the volumesof generalized hyperbolic polyhedra with the same one-dimensional skeleton equals the volume of an ideal right-angled hyperbolic polyhedronwhose one-dimensional skeleton is the medial graph for.We give the upper bounds for the volume ofan arbitrary generalized hyperbolic polyhedronsuch that the bounds depend linearly onthe number of edges. Moreover, we show that the bounds can be improvedif the polyhedron has triangular faces and trivalent vertices.As application we obtain some new upper bounds for the volumeof the complement of the hyperbolic link with more than eight twists in a diagram.
KW - 514.132:515.162
KW - Lobachevsky geometry hyperbolic space
KW - augmented links
KW - hyperbolic knots and links
KW - volumes of hyperbolic polyhedra
UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85195133256&origin=inward&txGid=924a8aeab3ed43a3760739e839daf851
UR - https://www.mendeley.com/catalogue/bc3c8505-2fa3-3443-938e-c316f94ea7e3/
U2 - 10.1134/S0037446624030042
DO - 10.1134/S0037446624030042
M3 - Article
VL - 65
SP - 534
EP - 551
JO - Siberian Mathematical Journal
JF - Siberian Mathematical Journal
SN - 0037-4466
IS - 3
ER -
ID: 61042270