Standard

Universal Enveloping Lie Rota–Baxter Algebras of Pre-Lie and Post-Lie Algebras. / Gubarev, V. Yu.

в: Algebra and Logic, Том 58, № 1, 15.03.2019, стр. 1-14.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Gubarev VY. Universal Enveloping Lie Rota–Baxter Algebras of Pre-Lie and Post-Lie Algebras. Algebra and Logic. 2019 март 15;58(1):1-14. doi: 10.1007/s10469-019-09520-8

Author

Gubarev, V. Yu. / Universal Enveloping Lie Rota–Baxter Algebras of Pre-Lie and Post-Lie Algebras. в: Algebra and Logic. 2019 ; Том 58, № 1. стр. 1-14.

BibTeX

@article{21e617601fb048e2af2c30593e269cf1,
title = "Universal Enveloping Lie Rota–Baxter Algebras of Pre-Lie and Post-Lie Algebras",
abstract = "Universal enveloping Lie Rota–Baxter algebras of pre-Lie and post-Lie algebras are constructed. It is proved that the pairs of varieties (RBLie, preLie) and (RBλLie, postLie) are PBW-pairs and that the variety of Lie Rota–Baxter algebras is not a Schreier variety.",
keywords = "Lyndon–Shirshov word, partially commutative Lie algebra, PBW-pair of varieties, post-Lie algebra, pre-Lie algebra, Rota–Baxter algebra, Schreier variety, universal enveloping algebra, Rota-Baxter algebra, Lyndon-Shirshov word",
author = "Gubarev, {V. Yu}",
year = "2019",
month = mar,
day = "15",
doi = "10.1007/s10469-019-09520-8",
language = "English",
volume = "58",
pages = "1--14",
journal = "Algebra and Logic",
issn = "0002-5232",
publisher = "Springer US",
number = "1",

}

RIS

TY - JOUR

T1 - Universal Enveloping Lie Rota–Baxter Algebras of Pre-Lie and Post-Lie Algebras

AU - Gubarev, V. Yu

PY - 2019/3/15

Y1 - 2019/3/15

N2 - Universal enveloping Lie Rota–Baxter algebras of pre-Lie and post-Lie algebras are constructed. It is proved that the pairs of varieties (RBLie, preLie) and (RBλLie, postLie) are PBW-pairs and that the variety of Lie Rota–Baxter algebras is not a Schreier variety.

AB - Universal enveloping Lie Rota–Baxter algebras of pre-Lie and post-Lie algebras are constructed. It is proved that the pairs of varieties (RBLie, preLie) and (RBλLie, postLie) are PBW-pairs and that the variety of Lie Rota–Baxter algebras is not a Schreier variety.

KW - Lyndon–Shirshov word

KW - partially commutative Lie algebra

KW - PBW-pair of varieties

KW - post-Lie algebra

KW - pre-Lie algebra

KW - Rota–Baxter algebra

KW - Schreier variety

KW - universal enveloping algebra

KW - Rota-Baxter algebra

KW - Lyndon-Shirshov word

UR - http://www.scopus.com/inward/record.url?scp=85066990849&partnerID=8YFLogxK

U2 - 10.1007/s10469-019-09520-8

DO - 10.1007/s10469-019-09520-8

M3 - Article

AN - SCOPUS:85066990849

VL - 58

SP - 1

EP - 14

JO - Algebra and Logic

JF - Algebra and Logic

SN - 0002-5232

IS - 1

ER -

ID: 20591363