Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
Uncertainty-function-based continuation framework in data assimilation algorithms for atmospheric chemistry models. / Penenko, A. V.; Konopleva, V. S.; Golenko, P. M. и др.
27th International Symposium on Atmospheric and Ocean Optics, Atmospheric Physics. ред. / Gennadii G. Matvienko; Oleg A. Romanovskii. SPIE, 2021. 119168O (Proceedings of SPIE - The International Society for Optical Engineering; Том 11916).Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
}
TY - GEN
T1 - Uncertainty-function-based continuation framework in data assimilation algorithms for atmospheric chemistry models
AU - Penenko, A. V.
AU - Konopleva, V. S.
AU - Golenko, P. M.
AU - Penenko, V. V.
N1 - Funding Information: The work was supported by Russian Foundation for Basic Research project No. 20-01-00560 (in the part of continuation data assimilation framework implementation and analysis) and by Russian Foundation for Basic Research project No. 19-07-01135 (in the part of coefficient identification algorithm development). Publisher Copyright: © 2021 SPIE.
PY - 2021
Y1 - 2021
N2 - The development of efficient data assimilation algorithms for atmospheric chemistry models is an important part of modern air quality studies. In the data assimilation framework considered, the identification of the chosen model parameters is used to continue the model state function to the unobservable part of the domain. This continuation problem is solved sequentially on the set of time intervals called the data assimilation windows. The framework is illustrated on a low-dimensional atmospheric chemistry model.
AB - The development of efficient data assimilation algorithms for atmospheric chemistry models is an important part of modern air quality studies. In the data assimilation framework considered, the identification of the chosen model parameters is used to continue the model state function to the unobservable part of the domain. This continuation problem is solved sequentially on the set of time intervals called the data assimilation windows. The framework is illustrated on a low-dimensional atmospheric chemistry model.
KW - atmospheric chemistry
KW - continuation problem
KW - data assimilation
KW - di erential evolution
KW - reaction rates
KW - uncertainty function
KW - variational approach
UR - http://www.scopus.com/inward/record.url?scp=85124693890&partnerID=8YFLogxK
UR - https://www.mendeley.com/catalogue/a3c2df06-0d07-3ff3-a0eb-6d7330828c8a/
U2 - 10.1117/12.2603422
DO - 10.1117/12.2603422
M3 - Conference contribution
AN - SCOPUS:85124693890
SN - 9781510646971
T3 - Proceedings of SPIE - The International Society for Optical Engineering
BT - 27th International Symposium on Atmospheric and Ocean Optics, Atmospheric Physics
A2 - Matvienko, Gennadii G.
A2 - Romanovskii, Oleg A.
PB - SPIE
T2 - 27th International Symposium on Atmospheric and Ocean Optics, Atmospheric Physics 2021
Y2 - 5 July 2021 through 9 July 2021
ER -
ID: 35538975