Standard

Ultimate peculiarity in angular spectrum enhances the parametric solution of the inverse Mie problem. / Konokhova, Anastasiya I.; Yastrebova, Ekaterina S.; Strokotov, Dmitry I. и др.

в: Journal of Quantitative Spectroscopy and Radiative Transfer, Том 235, 01.09.2019, стр. 204-208.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Konokhova, AI, Yastrebova, ES, Strokotov, DI, Chernyshev, AV, Karpenko, AA & Maltsev, VP 2019, 'Ultimate peculiarity in angular spectrum enhances the parametric solution of the inverse Mie problem', Journal of Quantitative Spectroscopy and Radiative Transfer, Том. 235, стр. 204-208. https://doi.org/10.1016/j.jqsrt.2019.06.034

APA

Konokhova, A. I., Yastrebova, E. S., Strokotov, D. I., Chernyshev, A. V., Karpenko, A. A., & Maltsev, V. P. (2019). Ultimate peculiarity in angular spectrum enhances the parametric solution of the inverse Mie problem. Journal of Quantitative Spectroscopy and Radiative Transfer, 235, 204-208. https://doi.org/10.1016/j.jqsrt.2019.06.034

Vancouver

Konokhova AI, Yastrebova ES, Strokotov DI, Chernyshev AV, Karpenko AA, Maltsev VP. Ultimate peculiarity in angular spectrum enhances the parametric solution of the inverse Mie problem. Journal of Quantitative Spectroscopy and Radiative Transfer. 2019 сент. 1;235:204-208. doi: 10.1016/j.jqsrt.2019.06.034

Author

Konokhova, Anastasiya I. ; Yastrebova, Ekaterina S. ; Strokotov, Dmitry I. и др. / Ultimate peculiarity in angular spectrum enhances the parametric solution of the inverse Mie problem. в: Journal of Quantitative Spectroscopy and Radiative Transfer. 2019 ; Том 235. стр. 204-208.

BibTeX

@article{04bee07fafc344589b43c8925729aa81,
title = "Ultimate peculiarity in angular spectrum enhances the parametric solution of the inverse Mie problem",
abstract = "With this study, we are introducing a new parameter, ultimate spectral peculiarity Lu, to be used in solution of the inverse Mie problem. This parameter is evaluated from a power spectrum of an angle-resolved light-scattering profile (LSP). Direct correlation of single sphere size and Lu allows sizing a homogeneous sphere from 0.6 µm. In order to determine the refractive index (RI) of the sphere we utilized the integral of the LSP within the particular angular range providing the largest uniqueness domain where both size and RI can be unambiguously determined. The integral and Lu were used in the spectral solution of the inverse Mie problem providing the real-time analysis of milk fat globules, spherized red blood cells, polymer and silica beads with the scanning flow cytometer.",
keywords = "Angle-resolved light scattering, Flow cytometry, Inverse problem, Mie theory, CELLS, SIZE, LIGHT-SCATTERING, REFRACTIVE-INDEX",
author = "Konokhova, {Anastasiya I.} and Yastrebova, {Ekaterina S.} and Strokotov, {Dmitry I.} and Chernyshev, {Andrei V.} and Karpenko, {Andrei A.} and Maltsev, {Valeri P.}",
year = "2019",
month = sep,
day = "1",
doi = "10.1016/j.jqsrt.2019.06.034",
language = "English",
volume = "235",
pages = "204--208",
journal = "Journal of Quantitative Spectroscopy and Radiative Transfer",
issn = "0022-4073",
publisher = "Elsevier Ltd",

}

RIS

TY - JOUR

T1 - Ultimate peculiarity in angular spectrum enhances the parametric solution of the inverse Mie problem

AU - Konokhova, Anastasiya I.

AU - Yastrebova, Ekaterina S.

AU - Strokotov, Dmitry I.

AU - Chernyshev, Andrei V.

AU - Karpenko, Andrei A.

AU - Maltsev, Valeri P.

PY - 2019/9/1

Y1 - 2019/9/1

N2 - With this study, we are introducing a new parameter, ultimate spectral peculiarity Lu, to be used in solution of the inverse Mie problem. This parameter is evaluated from a power spectrum of an angle-resolved light-scattering profile (LSP). Direct correlation of single sphere size and Lu allows sizing a homogeneous sphere from 0.6 µm. In order to determine the refractive index (RI) of the sphere we utilized the integral of the LSP within the particular angular range providing the largest uniqueness domain where both size and RI can be unambiguously determined. The integral and Lu were used in the spectral solution of the inverse Mie problem providing the real-time analysis of milk fat globules, spherized red blood cells, polymer and silica beads with the scanning flow cytometer.

AB - With this study, we are introducing a new parameter, ultimate spectral peculiarity Lu, to be used in solution of the inverse Mie problem. This parameter is evaluated from a power spectrum of an angle-resolved light-scattering profile (LSP). Direct correlation of single sphere size and Lu allows sizing a homogeneous sphere from 0.6 µm. In order to determine the refractive index (RI) of the sphere we utilized the integral of the LSP within the particular angular range providing the largest uniqueness domain where both size and RI can be unambiguously determined. The integral and Lu were used in the spectral solution of the inverse Mie problem providing the real-time analysis of milk fat globules, spherized red blood cells, polymer and silica beads with the scanning flow cytometer.

KW - Angle-resolved light scattering

KW - Flow cytometry

KW - Inverse problem

KW - Mie theory

KW - CELLS

KW - SIZE

KW - LIGHT-SCATTERING

KW - REFRACTIVE-INDEX

UR - http://www.scopus.com/inward/record.url?scp=85068507462&partnerID=8YFLogxK

U2 - 10.1016/j.jqsrt.2019.06.034

DO - 10.1016/j.jqsrt.2019.06.034

M3 - Article

AN - SCOPUS:85068507462

VL - 235

SP - 204

EP - 208

JO - Journal of Quantitative Spectroscopy and Radiative Transfer

JF - Journal of Quantitative Spectroscopy and Radiative Transfer

SN - 0022-4073

ER -

ID: 20777654