Standard

The universal conservative superalgebra. / Kaygorodov, Ivan; Popov, Yury; Pozhidaev, Alexandr.

в: Communications in Algebra, Том 47, № 10, 03.10.2019, стр. 4066-4076.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Kaygorodov, I, Popov, Y & Pozhidaev, A 2019, 'The universal conservative superalgebra', Communications in Algebra, Том. 47, № 10, стр. 4066-4076. https://doi.org/10.1080/00927872.2019.1576189

APA

Kaygorodov, I., Popov, Y., & Pozhidaev, A. (2019). The universal conservative superalgebra. Communications in Algebra, 47(10), 4066-4076. https://doi.org/10.1080/00927872.2019.1576189

Vancouver

Kaygorodov I, Popov Y, Pozhidaev A. The universal conservative superalgebra. Communications in Algebra. 2019 окт. 3;47(10):4066-4076. doi: 10.1080/00927872.2019.1576189

Author

Kaygorodov, Ivan ; Popov, Yury ; Pozhidaev, Alexandr. / The universal conservative superalgebra. в: Communications in Algebra. 2019 ; Том 47, № 10. стр. 4066-4076.

BibTeX

@article{29e204931cad48ec8b2fbf3162099327,
title = "The universal conservative superalgebra",
abstract = "We introduce the class of conservative superalgebras, in particular, the superalgebra of bilinear operations on a superspace V. Moreover, we show that each conservative superalgebra modulo its maximal Jacobian ideal is embedded into for a certain superspace V.",
keywords = "17A30, 17D99, conservative algebra, Kantor product, Superalgebra, ALGEBRAS",
author = "Ivan Kaygorodov and Yury Popov and Alexandr Pozhidaev",
year = "2019",
month = oct,
day = "3",
doi = "10.1080/00927872.2019.1576189",
language = "English",
volume = "47",
pages = "4066--4076",
journal = "Communications in Algebra",
issn = "0092-7872",
publisher = "Taylor and Francis Ltd.",
number = "10",

}

RIS

TY - JOUR

T1 - The universal conservative superalgebra

AU - Kaygorodov, Ivan

AU - Popov, Yury

AU - Pozhidaev, Alexandr

PY - 2019/10/3

Y1 - 2019/10/3

N2 - We introduce the class of conservative superalgebras, in particular, the superalgebra of bilinear operations on a superspace V. Moreover, we show that each conservative superalgebra modulo its maximal Jacobian ideal is embedded into for a certain superspace V.

AB - We introduce the class of conservative superalgebras, in particular, the superalgebra of bilinear operations on a superspace V. Moreover, we show that each conservative superalgebra modulo its maximal Jacobian ideal is embedded into for a certain superspace V.

KW - 17A30

KW - 17D99

KW - conservative algebra

KW - Kantor product

KW - Superalgebra

KW - ALGEBRAS

UR - http://www.scopus.com/inward/record.url?scp=85063736195&partnerID=8YFLogxK

U2 - 10.1080/00927872.2019.1576189

DO - 10.1080/00927872.2019.1576189

M3 - Article

AN - SCOPUS:85063736195

VL - 47

SP - 4066

EP - 4076

JO - Communications in Algebra

JF - Communications in Algebra

SN - 0092-7872

IS - 10

ER -

ID: 19358415