Standard

The total curvature of knots under second-order infinitesimal bending. / Najdanović, Marija S.; Ranĉić, Svetozar R.; Kauffman, Louis H. и др.

в: Journal of Knot Theory and its Ramifications, Том 28, № 1, 1950005, 01.01.2019.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Najdanović, MS, Ranĉić, SR, Kauffman, LH & Velimirović, LS 2019, 'The total curvature of knots under second-order infinitesimal bending', Journal of Knot Theory and its Ramifications, Том. 28, № 1, 1950005. https://doi.org/10.1142/S0218216519500056

APA

Najdanović, M. S., Ranĉić, S. R., Kauffman, L. H., & Velimirović, L. S. (2019). The total curvature of knots under second-order infinitesimal bending. Journal of Knot Theory and its Ramifications, 28(1), [1950005]. https://doi.org/10.1142/S0218216519500056

Vancouver

Najdanović MS, Ranĉić SR, Kauffman LH, Velimirović LS. The total curvature of knots under second-order infinitesimal bending. Journal of Knot Theory and its Ramifications. 2019 янв. 1;28(1):1950005. doi: 10.1142/S0218216519500056

Author

Najdanović, Marija S. ; Ranĉić, Svetozar R. ; Kauffman, Louis H. и др. / The total curvature of knots under second-order infinitesimal bending. в: Journal of Knot Theory and its Ramifications. 2019 ; Том 28, № 1.

BibTeX

@article{43ffa53a7fc04251934fa402131020c9,
title = "The total curvature of knots under second-order infinitesimal bending",
abstract = "In this paper, we consider infinitesimal bending of the second-order of curves and knots. The total curvature of the knot during the second-order infinitesimal bending is discussed and expressions for the first and the second variation of the total curvature are given. Some examples aimed to illustrate infinitesimal bending of knots are shown using figures. Colors are used to illustrate curvature values at different points of bent knots and the total curvature is numerically calculated.",
keywords = "curve, first variation, knot, second variation, Second-order infinitesimal bending, total curvature",
author = "Najdanovi{\'c}, {Marija S.} and Ranĉi{\'c}, {Svetozar R.} and Kauffman, {Louis H.} and Velimirovi{\'c}, {Ljubica S.}",
note = "Publisher Copyright: {\textcopyright} 2019 World Scientific Publishing Company.",
year = "2019",
month = jan,
day = "1",
doi = "10.1142/S0218216519500056",
language = "English",
volume = "28",
journal = "Journal of Knot Theory and its Ramifications",
issn = "0218-2165",
publisher = "World Scientific Publishing Co. Pte Ltd",
number = "1",

}

RIS

TY - JOUR

T1 - The total curvature of knots under second-order infinitesimal bending

AU - Najdanović, Marija S.

AU - Ranĉić, Svetozar R.

AU - Kauffman, Louis H.

AU - Velimirović, Ljubica S.

N1 - Publisher Copyright: © 2019 World Scientific Publishing Company.

PY - 2019/1/1

Y1 - 2019/1/1

N2 - In this paper, we consider infinitesimal bending of the second-order of curves and knots. The total curvature of the knot during the second-order infinitesimal bending is discussed and expressions for the first and the second variation of the total curvature are given. Some examples aimed to illustrate infinitesimal bending of knots are shown using figures. Colors are used to illustrate curvature values at different points of bent knots and the total curvature is numerically calculated.

AB - In this paper, we consider infinitesimal bending of the second-order of curves and knots. The total curvature of the knot during the second-order infinitesimal bending is discussed and expressions for the first and the second variation of the total curvature are given. Some examples aimed to illustrate infinitesimal bending of knots are shown using figures. Colors are used to illustrate curvature values at different points of bent knots and the total curvature is numerically calculated.

KW - curve

KW - first variation

KW - knot

KW - second variation

KW - Second-order infinitesimal bending

KW - total curvature

UR - http://www.scopus.com/inward/record.url?scp=85059612811&partnerID=8YFLogxK

U2 - 10.1142/S0218216519500056

DO - 10.1142/S0218216519500056

M3 - Article

AN - SCOPUS:85059612811

VL - 28

JO - Journal of Knot Theory and its Ramifications

JF - Journal of Knot Theory and its Ramifications

SN - 0218-2165

IS - 1

M1 - 1950005

ER -

ID: 18186108