Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
The system K2Co3–CaCo3–MgCo3 at 3 GPA : Implications for carbonatite melt compositions in the shallow continental lithosphere. / Arefiev, Anton V.; Shatskiy, Anton; Podborodnikov, Ivan V. и др.
в: Minerals, Том 9, № 5, 296, 01.05.2019.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - The system K2Co3–CaCo3–MgCo3 at 3 GPA
T2 - Implications for carbonatite melt compositions in the shallow continental lithosphere
AU - Arefiev, Anton V.
AU - Shatskiy, Anton
AU - Podborodnikov, Ivan V.
AU - Bekhtenova, Altyna
AU - Litasov, Konstantin D.
PY - 2019/5/1
Y1 - 2019/5/1
N2 - Potassic dolomitic melts are believed to be responsible for the metasomatic alteration of the shallow continental lithosphere. However, the temperature stability and range of compositions of these melts are poorly understood. In this regard, we performed experiments on phase relationships in the system K2CO3–CaCO3–MgCO3 at 3 GPa and at 750–1100 °C. At 750 and 800 °C, the system has five intermediate compounds: Dolomite, Ca0.8Mg0.2CO3 Ca-dolomite, K2(Ca≥0.84Mg≤0.16)2(CO3)3, K2(Ca≥0.70Mg≤0.30)(CO3)2 bütschliite, and K2(Mg≥0.78Ca≤0.22)(CO3)2. At 850 °C, an additional intermediate compound, K2(Ca≥0.96Mg≤0.04)3CO3)4, appears. The K2Mg(CO3)2 compound disappears near 900 °C via incongruent melting, to produce magnesite and a liquid. K2Ca(CO3)2 bütschliite melts incongruently at 1000 °C to produce K2Ca2(CO3)3 and a liquid. K2Ca2(CO3)3 and K2Ca3(CO3)4 remain stable in the whole studied temperature range. The liquidus projection of the studied ternary system is divided into nine regions representing equilibrium between the liquid and one of the primary solid phases, including magnesite, dolomite, Ca-dolomite, calcite-dolomite solid solutions, K2Ca3(CO3)4, K2Ca2(CO3)3, K2Ca(CO3)2 bütschliite, K2Mg(CO3)2, and K2CO3 solid solutions containing up to 24 mol% CaCO3 and less than 2 mol% MgCO3. The system has six ternary peritectic reaction points and one minimum on the liquidus at 825 ± 25 °C and 53K2CO3∙47Ca0.4Mg0.6CO3. The minimum point resembles a eutectic controlled by a four-phase reaction, by which, on cooling, the liquid transforms into three solid phases: K2(Mg0.78Ca0.22)(CO3)2, K2(Ca0.70Mg0.30)(CO3)2 bütschliite, and a K1.70Ca0.23Mg0.07CO3 solid solution. Since, at 3 GPa, the system has a single eutectic, there is no thermal barrier for liquid fractionation from alkali-poor toward K-rich dolomitic compositions, more alkaline than bütschliite. Based on the present results we suggest that the K–Ca–Mg carbonate melt containing ~45 mol% K2CO3 with a ratio Ca/(Ca + Mg) = 0.3–0.4 is thermodynamically stable at thermal conditions of the continental lithosphere (~850 °C), and at a depth of 100 km.
AB - Potassic dolomitic melts are believed to be responsible for the metasomatic alteration of the shallow continental lithosphere. However, the temperature stability and range of compositions of these melts are poorly understood. In this regard, we performed experiments on phase relationships in the system K2CO3–CaCO3–MgCO3 at 3 GPa and at 750–1100 °C. At 750 and 800 °C, the system has five intermediate compounds: Dolomite, Ca0.8Mg0.2CO3 Ca-dolomite, K2(Ca≥0.84Mg≤0.16)2(CO3)3, K2(Ca≥0.70Mg≤0.30)(CO3)2 bütschliite, and K2(Mg≥0.78Ca≤0.22)(CO3)2. At 850 °C, an additional intermediate compound, K2(Ca≥0.96Mg≤0.04)3CO3)4, appears. The K2Mg(CO3)2 compound disappears near 900 °C via incongruent melting, to produce magnesite and a liquid. K2Ca(CO3)2 bütschliite melts incongruently at 1000 °C to produce K2Ca2(CO3)3 and a liquid. K2Ca2(CO3)3 and K2Ca3(CO3)4 remain stable in the whole studied temperature range. The liquidus projection of the studied ternary system is divided into nine regions representing equilibrium between the liquid and one of the primary solid phases, including magnesite, dolomite, Ca-dolomite, calcite-dolomite solid solutions, K2Ca3(CO3)4, K2Ca2(CO3)3, K2Ca(CO3)2 bütschliite, K2Mg(CO3)2, and K2CO3 solid solutions containing up to 24 mol% CaCO3 and less than 2 mol% MgCO3. The system has six ternary peritectic reaction points and one minimum on the liquidus at 825 ± 25 °C and 53K2CO3∙47Ca0.4Mg0.6CO3. The minimum point resembles a eutectic controlled by a four-phase reaction, by which, on cooling, the liquid transforms into three solid phases: K2(Mg0.78Ca0.22)(CO3)2, K2(Ca0.70Mg0.30)(CO3)2 bütschliite, and a K1.70Ca0.23Mg0.07CO3 solid solution. Since, at 3 GPa, the system has a single eutectic, there is no thermal barrier for liquid fractionation from alkali-poor toward K-rich dolomitic compositions, more alkaline than bütschliite. Based on the present results we suggest that the K–Ca–Mg carbonate melt containing ~45 mol% K2CO3 with a ratio Ca/(Ca + Mg) = 0.3–0.4 is thermodynamically stable at thermal conditions of the continental lithosphere (~850 °C), and at a depth of 100 km.
KW - Bütschliite
KW - Carbonatite
KW - Continental lithosphere
KW - High-pressure experiments
KW - K–Ca carbonates
KW - Shallow mantle
KW - FLUIDS
KW - high-pressure experiments
KW - UDACHNAYA-EAST KIMBERLITE
KW - GARNET LHERZOLITE
KW - PERIDOTITE XENOLITHS
KW - butschliite
KW - MANTLE
KW - DEGREES-C IMPLICATIONS
KW - PRESSURE
KW - shallow mantle
KW - K-Ca carbonates
KW - FIBROUS DIAMONDS
KW - continental lithosphere
KW - PHASE-RELATIONS
KW - carbonatite
KW - METASOMATISM
UR - http://www.scopus.com/inward/record.url?scp=85068440978&partnerID=8YFLogxK
U2 - 10.3390/min9050296
DO - 10.3390/min9050296
M3 - Article
AN - SCOPUS:85068440978
VL - 9
JO - Minerals
JF - Minerals
SN - 2075-163X
IS - 5
M1 - 296
ER -
ID: 20780274