Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
The Structure of the Characteristic Polynomial of the Laplacian Matrix for a Circulant Graph with Non-Fixed Jumps. / Mednykh, A. D.; Mednykh, I. A.; Sokolova, G. K.
в: Siberian Advances in Mathematics, Том 35, № 2, 06.08.2025, стр. 146-155.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - The Structure of the Characteristic Polynomial of the Laplacian Matrix for a Circulant Graph with Non-Fixed Jumps
AU - Mednykh, A. D.
AU - Mednykh, I. A.
AU - Sokolova, G. K.
N1 - The study was carried out within the framework of the state contract of the Sobolev Institute of Mathematics (project no. FWNF-2022-0005). Mednykh, A. D. The Structure of the Characteristic Polynomial of the Laplacian Matrix for a Circulant Graph with Non-Fixed Jumps / A. D. Mednykh, I. A. Mednykh, G. K. Sokolova // Siberian Advances in Mathematics. – 2025. – Vol. 35, No. 2. – P. 146-155. – DOI 10.1134/S1055134425020063.
PY - 2025/8/6
Y1 - 2025/8/6
N2 - We describe the structure of the characteristic polynomial of the Laplacian matrix for a circulant graph withnon-fixed jumps. We represent the characteristic polynomial in the form of the product ofalgebraic functions involving roots of linear combinations of Chebyshev polynomials of the firstkind. We show that isthe product of the square of a polynomial with integer coefficients and explicitly described linearpolynomials with integer coefficients. We suggest a formula for the number of rooted spanningforests in such a graph.
AB - We describe the structure of the characteristic polynomial of the Laplacian matrix for a circulant graph withnon-fixed jumps. We represent the characteristic polynomial in the form of the product ofalgebraic functions involving roots of linear combinations of Chebyshev polynomials of the firstkind. We show that isthe product of the square of a polynomial with integer coefficients and explicitly described linearpolynomials with integer coefficients. We suggest a formula for the number of rooted spanningforests in such a graph.
KW - Circulant graph
KW - Laplacian matrix
KW - characteristic polynomial
KW - rooted spanning forest
UR - https://www.mendeley.com/catalogue/2a1e6dc1-e0f4-3b79-b430-79286808b852/
UR - https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105012723246&origin=inward
UR - https://elibrary.ru/item.asp?id=82714811
U2 - 10.1134/S1055134425020063
DO - 10.1134/S1055134425020063
M3 - Article
VL - 35
SP - 146
EP - 155
JO - Siberian Advances in Mathematics
JF - Siberian Advances in Mathematics
SN - 1055-1344
IS - 2
ER -
ID: 68771979