Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
The Strong -Sylow Theorem for the Groups PSL. / Revin, D. O.; Shepelev, V. D.
в: Siberian Mathematical Journal, Том 65, № 5, 25.09.2024, стр. 1187-1194.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - The Strong -Sylow Theorem for the Groups PSL
AU - Revin, D. O.
AU - Shepelev, V. D.
PY - 2024/9/25
Y1 - 2024/9/25
N2 - Let be a set of primes. A finite group is a -group if allprime divisors of the order of belong to. Following Wielandt,the -Sylow theorem holds for if all maximal-subgroups of are conjugate; if the -Sylow theorem holds forevery subgroup of then the strong -Sylow theorem holdsfor. The strong -Sylow theorem is known to hold for if and only if it holds for every nonabelian composition factor of.In 1979, Wielandt asked which finite simple nonabelian groups obey the strong -Sylow theorem.By now the answer isknown for sporadic and alternating groups. We give somearithmetic criterion for the validity of the strong -Sylow theorem forthe groups.
AB - Let be a set of primes. A finite group is a -group if allprime divisors of the order of belong to. Following Wielandt,the -Sylow theorem holds for if all maximal-subgroups of are conjugate; if the -Sylow theorem holds forevery subgroup of then the strong -Sylow theorem holdsfor. The strong -Sylow theorem is known to hold for if and only if it holds for every nonabelian composition factor of.In 1979, Wielandt asked which finite simple nonabelian groups obey the strong -Sylow theorem.By now the answer isknown for sporadic and alternating groups. We give somearithmetic criterion for the validity of the strong -Sylow theorem forthe groups.
KW - -Sylow theorem
KW - 512.542
KW - projective special linear group
KW - strong -Sylow theorem
UR - https://www.mendeley.com/catalogue/d880aedd-19e0-3815-be2f-7b57297b1e87/
U2 - 10.1134/S0037446624050173
DO - 10.1134/S0037446624050173
M3 - Article
VL - 65
SP - 1187
EP - 1194
JO - Siberian Mathematical Journal
JF - Siberian Mathematical Journal
SN - 0037-4466
IS - 5
ER -
ID: 60797873