Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
The Strong π-Sylow Theorem for the Groups PSL. / Revin, D. O.; Shepelev, V. D.
в: Siberian Mathematical Journal, Том 65, № 5, 09.2024, стр. 1187-1194.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - The Strong π-Sylow Theorem for the Groups PSL
AU - Revin, D. O.
AU - Shepelev, V. D.
N1 - The research was supported by the Russian Science Foundation (Project 24–21–00163), https://rscf.ru/project/24-21-00163/.
PY - 2024/9
Y1 - 2024/9
N2 - Let π be a set of primes. A finite group G is a π-group if all prime divisors of the order of G belong to π. Following Wielandt, the π-Sylow theorem holds for G if all maximal π-subgroups of G are conjugate; if the π-Sylow theorem holds for every subgroup of G then the strong π-Sylow theorem holds for G. The strong π-Sylow theorem is known to hold for G if and only if it holds for every nonabelian composition factor of G. In 1979, Wielandt asked which finite simple nonabelian groups obey the strong π-Sylow theorem. By now the answer is known for sporadic and alternating groups. We give some arithmetic criterion for the validity of the strong π-Sylow theorem for the groups PSL2(q).
AB - Let π be a set of primes. A finite group G is a π-group if all prime divisors of the order of G belong to π. Following Wielandt, the π-Sylow theorem holds for G if all maximal π-subgroups of G are conjugate; if the π-Sylow theorem holds for every subgroup of G then the strong π-Sylow theorem holds for G. The strong π-Sylow theorem is known to hold for G if and only if it holds for every nonabelian composition factor of G. In 1979, Wielandt asked which finite simple nonabelian groups obey the strong π-Sylow theorem. By now the answer is known for sporadic and alternating groups. We give some arithmetic criterion for the validity of the strong π-Sylow theorem for the groups PSL2(q).
KW - -Sylow theorem
KW - 512.542
KW - projective special linear group
KW - strong -Sylow theorem
UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85204874304&origin=inward&txGid=313f62165d77d77080b9a13bc0564d97
UR - https://elibrary.ru/item.asp?id=69920893
UR - https://www.mendeley.com/catalogue/d880aedd-19e0-3815-be2f-7b57297b1e87/
U2 - 10.1134/S0037446624050173
DO - 10.1134/S0037446624050173
M3 - Article
VL - 65
SP - 1187
EP - 1194
JO - Siberian Mathematical Journal
JF - Siberian Mathematical Journal
SN - 0037-4466
IS - 5
ER -
ID: 60797873