Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
The prevalence of persistent tangles. / Kauffman, Louis H.; Lopes, Pedro.
в: Topology and its Applications, Том 271, 107040, 15.02.2020.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - The prevalence of persistent tangles
AU - Kauffman, Louis H.
AU - Lopes, Pedro
N1 - Publisher Copyright: © 2020 Elsevier B.V. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/2/15
Y1 - 2020/2/15
N2 - This article addresses persistent tangles. These are tangles whose presence in a knot diagram implies the diagram is knotted. We provide new methods for constructing persistent tangles. Our techniques rely mainly on the existence of non-trivial colorings for the tangles in question. Our main result in this article is that any knot admitting a non-trivial coloring gives rise to persistent tangles. Furthermore, we discuss when these persistent tangles are non-trivial.
AB - This article addresses persistent tangles. These are tangles whose presence in a knot diagram implies the diagram is knotted. We provide new methods for constructing persistent tangles. Our techniques rely mainly on the existence of non-trivial colorings for the tangles in question. Our main result in this article is that any knot admitting a non-trivial coloring gives rise to persistent tangles. Furthermore, we discuss when these persistent tangles are non-trivial.
KW - Colorings
KW - Irreducible tangles
KW - Knots
KW - Persistent tangles
KW - Tangles
UR - http://www.scopus.com/inward/record.url?scp=85077646275&partnerID=8YFLogxK
U2 - 10.1016/j.topol.2019.107040
DO - 10.1016/j.topol.2019.107040
M3 - Article
AN - SCOPUS:85077646275
VL - 271
JO - Topology and its Applications
JF - Topology and its Applications
SN - 0166-8641
M1 - 107040
ER -
ID: 23102805