Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
The Multiplicity Problem for Periodic Orbits of Magnetic Flows on the 2-Sphere. / Abbondandolo, Alberto; Asselle, Luca; Benedetti, Gabriele и др.
в: Advanced Nonlinear Studies, Том 17, № 1, 02.01.2017, стр. 17-30.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - The Multiplicity Problem for Periodic Orbits of Magnetic Flows on the 2-Sphere
AU - Abbondandolo, Alberto
AU - Asselle, Luca
AU - Benedetti, Gabriele
AU - Mazzucchelli, Marco
AU - Taimanov, Iskander A.
PY - 2017/1/2
Y1 - 2017/1/2
N2 - We consider magnetic Tonelli Hamiltonian systems on the cotangent bundle of the 2-sphere, where the magnetic form is not necessarily exact. It is known that, on very low and on high energy levels, these systems may have only finitely many periodic orbits. Our main result asserts that almost all energy levels in a precisely characterized intermediate range (e(0), e(1)) possess infinitely many periodic orbits. Such a range of energies is non-empty, for instance, in the physically relevant case where the Tonelli Lagrangian is a kinetic energy and the magnetic form is oscillating (in which case, e(0) = 0 is the minimal energy of the system).
AB - We consider magnetic Tonelli Hamiltonian systems on the cotangent bundle of the 2-sphere, where the magnetic form is not necessarily exact. It is known that, on very low and on high energy levels, these systems may have only finitely many periodic orbits. Our main result asserts that almost all energy levels in a precisely characterized intermediate range (e(0), e(1)) possess infinitely many periodic orbits. Such a range of energies is non-empty, for instance, in the physically relevant case where the Tonelli Lagrangian is a kinetic energy and the magnetic form is oscillating (in which case, e(0) = 0 is the minimal energy of the system).
KW - Tonelli Lagrangians
KW - Magnetic Flows
KW - Hamiltonian Systems
KW - Periodic Orbits
KW - Mane Critical Values
KW - LAGRANGIAN SYSTEMS
KW - GEODESICS
KW - SURFACES
KW - FIELDS
KW - Mañé Critical Values
UR - http://www.scopus.com/inward/record.url?scp=85011634303&partnerID=8YFLogxK
U2 - 10.1515/ans-2016-6003
DO - 10.1515/ans-2016-6003
M3 - Article
VL - 17
SP - 17
EP - 30
JO - Advanced Nonlinear Studies
JF - Advanced Nonlinear Studies
SN - 1536-1365
IS - 1
ER -
ID: 18736082