Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
The Maximum Pointwise Rate of Convergence in Birkhoff’s Ergodic Theorem. / Kachurovskii, A. G.; Podvigin, I. V.; Svishchev, A. A.
в: Journal of Mathematical Sciences (United States), Том 255, № 2, 05.2021, стр. 119-123.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - The Maximum Pointwise Rate of Convergence in Birkhoff’s Ergodic Theorem
AU - Kachurovskii, A. G.
AU - Podvigin, I. V.
AU - Svishchev, A. A.
N1 - Publisher Copyright: © 2021, Springer Science+Business Media, LLC, part of Springer Nature. Copyright: Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2021/5
Y1 - 2021/5
N2 - A criterion for the maximum possible pointwise convergence rate in Birkhoff’s ergodic theorem for ergodic semiflows in a Lebesgue space is obtained. It is proved that higher rates of convergence in this theorem are impossible.
AB - A criterion for the maximum possible pointwise convergence rate in Birkhoff’s ergodic theorem for ergodic semiflows in a Lebesgue space is obtained. It is proved that higher rates of convergence in this theorem are impossible.
UR - http://www.scopus.com/inward/record.url?scp=85104783195&partnerID=8YFLogxK
U2 - 10.1007/s10958-021-05354-x
DO - 10.1007/s10958-021-05354-x
M3 - Article
AN - SCOPUS:85104783195
VL - 255
SP - 119
EP - 123
JO - Journal of Mathematical Sciences (United States)
JF - Journal of Mathematical Sciences (United States)
SN - 1072-3374
IS - 2
ER -
ID: 28455706