Standard

The Maximum Pointwise Rate of Convergence in Birkhoff’s Ergodic Theorem. / Kachurovskii, A. G.; Podvigin, I. V.; Svishchev, A. A.

в: Journal of Mathematical Sciences (United States), Том 255, № 2, 05.2021, стр. 119-123.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Kachurovskii, AG, Podvigin, IV & Svishchev, AA 2021, 'The Maximum Pointwise Rate of Convergence in Birkhoff’s Ergodic Theorem', Journal of Mathematical Sciences (United States), Том. 255, № 2, стр. 119-123. https://doi.org/10.1007/s10958-021-05354-x

APA

Vancouver

Kachurovskii AG, Podvigin IV, Svishchev AA. The Maximum Pointwise Rate of Convergence in Birkhoff’s Ergodic Theorem. Journal of Mathematical Sciences (United States). 2021 май;255(2):119-123. doi: 10.1007/s10958-021-05354-x

Author

Kachurovskii, A. G. ; Podvigin, I. V. ; Svishchev, A. A. / The Maximum Pointwise Rate of Convergence in Birkhoff’s Ergodic Theorem. в: Journal of Mathematical Sciences (United States). 2021 ; Том 255, № 2. стр. 119-123.

BibTeX

@article{888226b023b049f49433dbcfaf37e670,
title = "The Maximum Pointwise Rate of Convergence in Birkhoff{\textquoteright}s Ergodic Theorem",
abstract = "A criterion for the maximum possible pointwise convergence rate in Birkhoff{\textquoteright}s ergodic theorem for ergodic semiflows in a Lebesgue space is obtained. It is proved that higher rates of convergence in this theorem are impossible.",
author = "Kachurovskii, {A. G.} and Podvigin, {I. V.} and Svishchev, {A. A.}",
note = "Publisher Copyright: {\textcopyright} 2021, Springer Science+Business Media, LLC, part of Springer Nature. Copyright: Copyright 2021 Elsevier B.V., All rights reserved.",
year = "2021",
month = may,
doi = "10.1007/s10958-021-05354-x",
language = "English",
volume = "255",
pages = "119--123",
journal = "Journal of Mathematical Sciences (United States)",
issn = "1072-3374",
publisher = "Springer Nature",
number = "2",

}

RIS

TY - JOUR

T1 - The Maximum Pointwise Rate of Convergence in Birkhoff’s Ergodic Theorem

AU - Kachurovskii, A. G.

AU - Podvigin, I. V.

AU - Svishchev, A. A.

N1 - Publisher Copyright: © 2021, Springer Science+Business Media, LLC, part of Springer Nature. Copyright: Copyright 2021 Elsevier B.V., All rights reserved.

PY - 2021/5

Y1 - 2021/5

N2 - A criterion for the maximum possible pointwise convergence rate in Birkhoff’s ergodic theorem for ergodic semiflows in a Lebesgue space is obtained. It is proved that higher rates of convergence in this theorem are impossible.

AB - A criterion for the maximum possible pointwise convergence rate in Birkhoff’s ergodic theorem for ergodic semiflows in a Lebesgue space is obtained. It is proved that higher rates of convergence in this theorem are impossible.

UR - http://www.scopus.com/inward/record.url?scp=85104783195&partnerID=8YFLogxK

U2 - 10.1007/s10958-021-05354-x

DO - 10.1007/s10958-021-05354-x

M3 - Article

AN - SCOPUS:85104783195

VL - 255

SP - 119

EP - 123

JO - Journal of Mathematical Sciences (United States)

JF - Journal of Mathematical Sciences (United States)

SN - 1072-3374

IS - 2

ER -

ID: 28455706