Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
The maximum number of induced open triangles in graphs of a given order. / Pyatkin, Artem; Lykhovyd, Eugene; Butenko, Sergiy.
в: Optimization Letters, Том 13, № 8, 01.11.2019, стр. 1927-1935.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - The maximum number of induced open triangles in graphs of a given order
AU - Pyatkin, Artem
AU - Lykhovyd, Eugene
AU - Butenko, Sergiy
PY - 2019/11/1
Y1 - 2019/11/1
N2 - An open triangle is a simple, undirected graph consisting of three vertices and two edges. It is shown that the maximum number of induced open triangles in a graph on n vertices is given by (n2-1)⌊n2⌋⌈n2⌉. The maximum is achieved for the complete bipartite graph K⌊ n / 2 ⌋ , ⌈ n / 2 ⌉. The maximum expected number of open triangles in a uniform random graph on n vertices is observed to be asymptotically equivalent.
AB - An open triangle is a simple, undirected graph consisting of three vertices and two edges. It is shown that the maximum number of induced open triangles in a graph on n vertices is given by (n2-1)⌊n2⌋⌈n2⌉. The maximum is achieved for the complete bipartite graph K⌊ n / 2 ⌋ , ⌈ n / 2 ⌉. The maximum expected number of open triangles in a uniform random graph on n vertices is observed to be asymptotically equivalent.
KW - Induced 3-paths
KW - Induced open triangles
KW - Network analysis
UR - http://www.scopus.com/inward/record.url?scp=85051467750&partnerID=8YFLogxK
U2 - 10.1007/s11590-018-1330-2
DO - 10.1007/s11590-018-1330-2
M3 - Article
AN - SCOPUS:85051467750
VL - 13
SP - 1927
EP - 1935
JO - Optimization Letters
JF - Optimization Letters
SN - 1862-4472
IS - 8
ER -
ID: 17250117