Standard

The Local Approximation Theorem in Various Coordinate Systems. / Basalaev, S. G.

в: Siberian Mathematical Journal, Том 59, № 5, 01.09.2018, стр. 778-785.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Basalaev, SG 2018, 'The Local Approximation Theorem in Various Coordinate Systems', Siberian Mathematical Journal, Том. 59, № 5, стр. 778-785. https://doi.org/10.1134/S003744661805004X

APA

Vancouver

Basalaev SG. The Local Approximation Theorem in Various Coordinate Systems. Siberian Mathematical Journal. 2018 сент. 1;59(5):778-785. doi: 10.1134/S003744661805004X

Author

Basalaev, S. G. / The Local Approximation Theorem in Various Coordinate Systems. в: Siberian Mathematical Journal. 2018 ; Том 59, № 5. стр. 778-785.

BibTeX

@article{5285f1fd88274c4bbf69f46e05990cab,
title = "The Local Approximation Theorem in Various Coordinate Systems",
abstract = "We find some sufficient conditions on the local coordinate system of a Carnot–Carath{\'e}odory space of low smoothness that ensure Gromov-type estimates on the divergence of local (quasi)metrics. We also obtain these estimates for the canonical coordinate system of the second kind and various mixed coordinate systems.",
keywords = "Carnot–Carath{\'e}odory space, local nilpotent approximation, DIFFERENTIABILITY, SPACES, Carnot-Caratheodory space",
author = "Basalaev, {S. G.}",
note = "Publisher Copyright: {\textcopyright} 2018, Pleiades Publishing, Ltd.",
year = "2018",
month = sep,
day = "1",
doi = "10.1134/S003744661805004X",
language = "English",
volume = "59",
pages = "778--785",
journal = "Siberian Mathematical Journal",
issn = "0037-4466",
publisher = "MAIK NAUKA/INTERPERIODICA/SPRINGER",
number = "5",

}

RIS

TY - JOUR

T1 - The Local Approximation Theorem in Various Coordinate Systems

AU - Basalaev, S. G.

N1 - Publisher Copyright: © 2018, Pleiades Publishing, Ltd.

PY - 2018/9/1

Y1 - 2018/9/1

N2 - We find some sufficient conditions on the local coordinate system of a Carnot–Carathéodory space of low smoothness that ensure Gromov-type estimates on the divergence of local (quasi)metrics. We also obtain these estimates for the canonical coordinate system of the second kind and various mixed coordinate systems.

AB - We find some sufficient conditions on the local coordinate system of a Carnot–Carathéodory space of low smoothness that ensure Gromov-type estimates on the divergence of local (quasi)metrics. We also obtain these estimates for the canonical coordinate system of the second kind and various mixed coordinate systems.

KW - Carnot–Carathéodory space

KW - local nilpotent approximation

KW - DIFFERENTIABILITY

KW - SPACES

KW - Carnot-Caratheodory space

UR - http://www.scopus.com/inward/record.url?scp=85057467833&partnerID=8YFLogxK

U2 - 10.1134/S003744661805004X

DO - 10.1134/S003744661805004X

M3 - Article

VL - 59

SP - 778

EP - 785

JO - Siberian Mathematical Journal

JF - Siberian Mathematical Journal

SN - 0037-4466

IS - 5

ER -

ID: 17670671