Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
The K2CO3-CaCO3-MgCO3 System at 6 GPa : Implications for diamond forming carbonatitic melts. / Arefiev, Anton V.; Shatskiy, Anton; Podborodnikov, Ivan V. и др.
в: Minerals, Том 9, № 9, 558, 01.09.2019.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - The K2CO3-CaCO3-MgCO3 System at 6 GPa
T2 - Implications for diamond forming carbonatitic melts
AU - Arefiev, Anton V.
AU - Shatskiy, Anton
AU - Podborodnikov, Ivan V.
AU - Litasov, Konstantin D.
PY - 2019/9/1
Y1 - 2019/9/1
N2 - Carbonate micro inclusions with abnormally high K2O appear in diamonds worldwide. However, the precise determination of their chemical and phase compositions is complicated due to their sub-micron size. The K2CO3-CaCO3-MgCO3 is the simplest system that can be used as a basis for the reconstruction of the phase composition and P-T conditions of the origin of the K-rich carbonatitic inclusions in diamonds. In this regard, this paper is concerned with the subsolidus and melting phase relations in the K2CO3-CaCO3-MgCO3 system established in Kawai-type multianvil experiments at 6 GPa and 900-1300 °C. At 900 °C, the system has three intermediate compounds K2Ca3(CO3)4 (Ca# ≥ 97), K2Ca(CO3)2 (Ca# ≥ 58), and K2Mg(CO3)2 (Ca# ≤ 10), where Ca# = 100Ca/(Ca + Mg). Miscibility gap betweenK2Ca(CO3)2 andK2Mg(CO3)2 suggest that their crystal structures differ at 6GPa. Mg-bearing K2Ca(CO3)2 (Ca# ≤ 28) disappear above 1000 °C to produce K2Ca3(CO3)4 + K8Ca3(CO3)7 + K2Mg(CO3)2. The system has two eutectics between 1000 and 1100 °C controlled by the following melting reactions: K2Ca3(CO3)4 + K8Ca3(CO3)7 + K2Mg(CO3)2 → [40K2CO3.60(Ca0.70Mg0.30)CO3] (1st eutectic melt) and K8Ca3(CO3)7 + K2CO3 + K2Mg(CO3)2 →[62K2CO3.38(Ca0.73Mg0.27)CO3] (2nd eutectic melt). The projection of the K2CO3-CaCO3-MgCO3 liquidus surface is divided into the eight primary crystallization fields for magnesite, aragonite, dolomite, Ca-dolomite, K2Ca3(CO3)4, K8Ca3(CO3)7, K2Mg(CO3)2, and K2CO3. The temperature increase is accompanied by the sequential disappearance of crystalline phases in the following sequence: K8Ca3(CO3)7 (1220 °C)→K2Mg(CO3)2 (1250 °C)→K2Ca3(CO3)4 (1350 °C)→K2CO3 (1425 °C)→dolomite (1450 °C)→CaCO3 (1660 °C)→ magnesite (1780 °C). The high Ca# of about 40 of the K2(Mg, Ca)(CO3)2 compound found as inclusions in diamond suggest (1) its formation and entrapment by diamond under the P-T conditions of 6 GPa and 1100 °C; (2) its remelting during transport by hot kimberlitemagma, and (3) repeated crystallization in inclusion that retained mantle pressure during kimberlite magma emplacement. The obtained results indicate that the K-Ca-Mg carbonate melts containing 20-40 mol% K2CO3 is stable under P-T conditions of 6 GPa and 1100-1200 °C corresponding to the base of the continental lithospheric mantle. It must be emphasized that the high alkali content in the carbonate melt is a necessary condition for its existence under geothermal conditions of the continental lithosphere, otherwise, it will simply freeze.
AB - Carbonate micro inclusions with abnormally high K2O appear in diamonds worldwide. However, the precise determination of their chemical and phase compositions is complicated due to their sub-micron size. The K2CO3-CaCO3-MgCO3 is the simplest system that can be used as a basis for the reconstruction of the phase composition and P-T conditions of the origin of the K-rich carbonatitic inclusions in diamonds. In this regard, this paper is concerned with the subsolidus and melting phase relations in the K2CO3-CaCO3-MgCO3 system established in Kawai-type multianvil experiments at 6 GPa and 900-1300 °C. At 900 °C, the system has three intermediate compounds K2Ca3(CO3)4 (Ca# ≥ 97), K2Ca(CO3)2 (Ca# ≥ 58), and K2Mg(CO3)2 (Ca# ≤ 10), where Ca# = 100Ca/(Ca + Mg). Miscibility gap betweenK2Ca(CO3)2 andK2Mg(CO3)2 suggest that their crystal structures differ at 6GPa. Mg-bearing K2Ca(CO3)2 (Ca# ≤ 28) disappear above 1000 °C to produce K2Ca3(CO3)4 + K8Ca3(CO3)7 + K2Mg(CO3)2. The system has two eutectics between 1000 and 1100 °C controlled by the following melting reactions: K2Ca3(CO3)4 + K8Ca3(CO3)7 + K2Mg(CO3)2 → [40K2CO3.60(Ca0.70Mg0.30)CO3] (1st eutectic melt) and K8Ca3(CO3)7 + K2CO3 + K2Mg(CO3)2 →[62K2CO3.38(Ca0.73Mg0.27)CO3] (2nd eutectic melt). The projection of the K2CO3-CaCO3-MgCO3 liquidus surface is divided into the eight primary crystallization fields for magnesite, aragonite, dolomite, Ca-dolomite, K2Ca3(CO3)4, K8Ca3(CO3)7, K2Mg(CO3)2, and K2CO3. The temperature increase is accompanied by the sequential disappearance of crystalline phases in the following sequence: K8Ca3(CO3)7 (1220 °C)→K2Mg(CO3)2 (1250 °C)→K2Ca3(CO3)4 (1350 °C)→K2CO3 (1425 °C)→dolomite (1450 °C)→CaCO3 (1660 °C)→ magnesite (1780 °C). The high Ca# of about 40 of the K2(Mg, Ca)(CO3)2 compound found as inclusions in diamond suggest (1) its formation and entrapment by diamond under the P-T conditions of 6 GPa and 1100 °C; (2) its remelting during transport by hot kimberlitemagma, and (3) repeated crystallization in inclusion that retained mantle pressure during kimberlite magma emplacement. The obtained results indicate that the K-Ca-Mg carbonate melts containing 20-40 mol% K2CO3 is stable under P-T conditions of 6 GPa and 1100-1200 °C corresponding to the base of the continental lithospheric mantle. It must be emphasized that the high alkali content in the carbonate melt is a necessary condition for its existence under geothermal conditions of the continental lithosphere, otherwise, it will simply freeze.
KW - Bütschliite
KW - Continental lithosphere
KW - Diamond formation
KW - Double potassium carbonates
KW - High-pressure experiment
KW - Ultrapotassic carbonatite melt
KW - LIQUID IMMISCIBILITY
KW - diamond formation
KW - HIGH-PRESSURE
KW - high-pressure experiment
KW - LITHOSPHERIC MANTLE
KW - CRYSTAL-STRUCTURE
KW - INTERNATSIONALNAYA KIMBERLITE PIPE
KW - butschliite
KW - UDACHNAYA KIMBERLITE
KW - FLUID INCLUSIONS
KW - ultrapotassic carbonatite melt
KW - MINERAL INCLUSIONS
KW - FIBROUS DIAMONDS
KW - continental lithosphere
KW - PHASE-RELATIONS
KW - double potassium carbonates
UR - http://www.scopus.com/inward/record.url?scp=85074570440&partnerID=8YFLogxK
U2 - 10.3390/min9090558
DO - 10.3390/min9090558
M3 - Article
AN - SCOPUS:85074570440
VL - 9
JO - Minerals
JF - Minerals
SN - 2075-163X
IS - 9
M1 - 558
ER -
ID: 22335755