Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
The Jacobian of a graph and graph automorphisms. / Estélyi, István; Karabáš, Ján; Mednykh, Alexander и др.
в: Discrete Mathematics, Том 348, № 2, 114259, 02.02.2025.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - The Jacobian of a graph and graph automorphisms
AU - Estélyi, István
AU - Karabáš, Ján
AU - Mednykh, Alexander
AU - Nedela, Roman
N1 - Финансирующий спонсор Номер финансирования Акроним Ministry of Education and Science of the Russian Federation Minobrnauka Agentúra na Podporu Výskumu a Vývoja VEGA 02/0078/20 APVV Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences FWNF-2022-0005 SIM, SB RAS
PY - 2025/2/2
Y1 - 2025/2/2
N2 - In the present paper we investigate the faithfulness of certain linear representations of groups of automorphisms of a graph X in the group of symmetries of the Jacobian of X. As a consequence we show that if a 3-edge-connected graph X admits a nonabelian semiregular group of automorphisms, then the Jacobian of X cannot be cyclic. In particular, Cayley graphs of degree at least three arising from nonabelian groups have non-cyclic Jacobians. While the size of the Jacobian of X is well-understood – it is equal to the number of spanning trees of X – the combinatorial interpretation of the rank of Jacobian of a graph is unknown. Our paper presents a contribution in this direction.
AB - In the present paper we investigate the faithfulness of certain linear representations of groups of automorphisms of a graph X in the group of symmetries of the Jacobian of X. As a consequence we show that if a 3-edge-connected graph X admits a nonabelian semiregular group of automorphisms, then the Jacobian of X cannot be cyclic. In particular, Cayley graphs of degree at least three arising from nonabelian groups have non-cyclic Jacobians. While the size of the Jacobian of X is well-understood – it is equal to the number of spanning trees of X – the combinatorial interpretation of the rank of Jacobian of a graph is unknown. Our paper presents a contribution in this direction.
KW - Automorphism
KW - Flow
KW - Graph
KW - Jacobian
UR - https://www.mendeley.com/catalogue/40f2d5f6-a901-3485-97d9-56ff47ea1fcd/
UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85203432938&origin=inward&txGid=bfc2dc68f1d574b90c2cea7680e650d0
U2 - 10.1016/j.disc.2024.114259
DO - 10.1016/j.disc.2024.114259
M3 - Article
VL - 348
JO - Discrete Mathematics
JF - Discrete Mathematics
SN - 0012-365X
IS - 2
M1 - 114259
ER -
ID: 62799665