Standard

The Injectivity Radius and Shortest Arcs of the Oblate Ellipsoid of Revolution. / Berestovskii, V. N.; Mustafa, A.

в: Siberian Mathematical Journal, Том 65, № 1, 01.2024, стр. 11-20.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Berestovskii VN, Mustafa A. The Injectivity Radius and Shortest Arcs of the Oblate Ellipsoid of Revolution. Siberian Mathematical Journal. 2024 янв.;65(1):11-20. doi: 10.1134/S0037446624010026

Author

Berestovskii, V. N. ; Mustafa, A. / The Injectivity Radius and Shortest Arcs of the Oblate Ellipsoid of Revolution. в: Siberian Mathematical Journal. 2024 ; Том 65, № 1. стр. 11-20.

BibTeX

@article{859bcac44c0d48f39655fe63ab6b6100,
title = "The Injectivity Radius and Shortest Arcs of the Oblate Ellipsoid of Revolution",
abstract = "We found the geodesics, shortest arcs, cut loci, and injectivity radiusof any oblate ellipsoid of revolution in three-dimensional Euclidean space.",
keywords = "513.81, Clairaut rule, cut locus, ellipsoid of revolution, geodesic, injectivity radius, shortest arc",
author = "Berestovskii, {V. N.} and A. Mustafa",
note = "The work is supported by the Mathematical Center in Akademgorodok under Agreement 075–15–2022–282 on April 5, 2022 with the Ministry of Science and Higher Education of the Russian Federation.",
year = "2024",
month = jan,
doi = "10.1134/S0037446624010026",
language = "English",
volume = "65",
pages = "11--20",
journal = "Siberian Mathematical Journal",
issn = "0037-4466",
publisher = "MAIK NAUKA/INTERPERIODICA/SPRINGER",
number = "1",

}

RIS

TY - JOUR

T1 - The Injectivity Radius and Shortest Arcs of the Oblate Ellipsoid of Revolution

AU - Berestovskii, V. N.

AU - Mustafa, A.

N1 - The work is supported by the Mathematical Center in Akademgorodok under Agreement 075–15–2022–282 on April 5, 2022 with the Ministry of Science and Higher Education of the Russian Federation.

PY - 2024/1

Y1 - 2024/1

N2 - We found the geodesics, shortest arcs, cut loci, and injectivity radiusof any oblate ellipsoid of revolution in three-dimensional Euclidean space.

AB - We found the geodesics, shortest arcs, cut loci, and injectivity radiusof any oblate ellipsoid of revolution in three-dimensional Euclidean space.

KW - 513.81

KW - Clairaut rule

KW - cut locus

KW - ellipsoid of revolution

KW - geodesic

KW - injectivity radius

KW - shortest arc

UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85184463165&origin=inward&txGid=2ff5b713ec80fcf89b8fe9d773599aa6

UR - https://www.mendeley.com/catalogue/e6f1a151-fb1b-3f6c-bee6-139fa646603b/

U2 - 10.1134/S0037446624010026

DO - 10.1134/S0037446624010026

M3 - Article

VL - 65

SP - 11

EP - 20

JO - Siberian Mathematical Journal

JF - Siberian Mathematical Journal

SN - 0037-4466

IS - 1

ER -

ID: 60458175