Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
The girths of the cubic pancake graphs. / Konstantinova, Elena V.; Gun, Son En.
в: Trudy Instituta Matematiki i Mekhaniki UrO RAN, Том 28, № 2, 22, 2022, стр. 274-296.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - The girths of the cubic pancake graphs
AU - Konstantinova, Elena V.
AU - Gun, Son En
N1 - Funding Information: The first author is supported by the project No. FWNF-2022-0017 (the state contract of the Sobolev Institute of Mathematics). The second author is partially supported by Mathematical Center in Akademgorodok under agreement No. 075-15-2022-281 with the Ministry of Science and Higher Education of the Russian Federation. Publisher Copyright: © Krasovskii Institute of Mathematics and Mechanics.All rights reserved.
PY - 2022
Y1 - 2022
N2 - The pancake graphs Pn, n ≥ 2, are Cayley graphs over the symmetric group Symngenerated by prefix-reversals. There are six generating sets of prefix-reversals of cardinality three which give connected Cayley graphs over the symmetric group known as cubic pancake graphs. In this paper we study the girth of the cubic pancake graphs. It is proved that considered cubic pancake graphs have the girths at most twelve.
AB - The pancake graphs Pn, n ≥ 2, are Cayley graphs over the symmetric group Symngenerated by prefix-reversals. There are six generating sets of prefix-reversals of cardinality three which give connected Cayley graphs over the symmetric group known as cubic pancake graphs. In this paper we study the girth of the cubic pancake graphs. It is proved that considered cubic pancake graphs have the girths at most twelve.
KW - cubic pancake graph
KW - girth
KW - Pancake graph
KW - prefix-reversal
UR - http://www.scopus.com/inward/record.url?scp=85134798522&partnerID=8YFLogxK
UR - https://elibrary.ru/item.asp?id=48585967
UR - https://www.mendeley.com/catalogue/2f142434-afdb-3db9-b800-952bcf7f858d/
U2 - 10.21538/0134-4889-2022-28-2-274-296
DO - 10.21538/0134-4889-2022-28-2-274-296
M3 - Article
AN - SCOPUS:85134798522
VL - 28
SP - 274
EP - 296
JO - Trudy Instituta Matematiki i Mekhaniki UrO RAN
JF - Trudy Instituta Matematiki i Mekhaniki UrO RAN
SN - 0134-4889
IS - 2
M1 - 22
ER -
ID: 36710865