Standard

THE GEOMETRIC PROPERTIES OF SHALLOW WATER EQUATION SOLUTIONS ON A ROTATING SPHERE. / Чупахин, Александр Павлович; Стецяк, Елена Станиславовна.

в: Lobachevskii Journal of Mathematics, Том 46, № 9, 2025, стр. 4343-4355.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Чупахин, АП & Стецяк, ЕС 2025, 'THE GEOMETRIC PROPERTIES OF SHALLOW WATER EQUATION SOLUTIONS ON A ROTATING SPHERE', Lobachevskii Journal of Mathematics, Том. 46, № 9, стр. 4343-4355. https://doi.org/10.1134/S1995080225611609

APA

Vancouver

Чупахин АП, Стецяк ЕС. THE GEOMETRIC PROPERTIES OF SHALLOW WATER EQUATION SOLUTIONS ON A ROTATING SPHERE. Lobachevskii Journal of Mathematics. 2025;46(9):4343-4355. doi: 10.1134/S1995080225611609

Author

Чупахин, Александр Павлович ; Стецяк, Елена Станиславовна. / THE GEOMETRIC PROPERTIES OF SHALLOW WATER EQUATION SOLUTIONS ON A ROTATING SPHERE. в: Lobachevskii Journal of Mathematics. 2025 ; Том 46, № 9. стр. 4343-4355.

BibTeX

@article{96bb5c8297804ad1ac05dd1b4f5559d5,
title = "THE GEOMETRIC PROPERTIES OF SHALLOW WATER EQUATION SOLUTIONS ON A ROTATING SPHERE",
abstract = "This paper investigates the shallow water model on a rotating attracting sphere, which describes large-scale motions of gas and liquid on the surface of solid planets. We provide a description of the geometric characteristics of simple stationary waves obtained within this model. For two types of stationary wave solutions, an analysis of the curvature of the continuous medium{\textquoteright}s profile is performed. Solutions with variable curvature profiles are shown to exist.",
keywords = "SHALLOW WATER ON A SPHERE, STATIONARY SOLUTIONS, GAUSSIAN AND MEAN CURVATURE",
author = "Чупахин, {Александр Павлович} and Стецяк, {Елена Станиславовна}",
note = "Chupakhin, A. P. The Geometric Properties of Shallow Water Equation Solutions on a Rotating Sphere / A. P. Chupakhin, E. S. Stetsyak // Lobachevskii Journal of Mathematics. – 2025. – Vol. 46, No. 9. – P. 4343-4355. – DOI 10.1134/S1995080225611609. – EDN LUVUVF.",
year = "2025",
doi = "10.1134/S1995080225611609",
language = "English",
volume = "46",
pages = "4343--4355",
journal = "Lobachevskii Journal of Mathematics",
issn = "1995-0802",
publisher = "ФГБУ {"}Издательство {"}Наука{"}",
number = "9",

}

RIS

TY - JOUR

T1 - THE GEOMETRIC PROPERTIES OF SHALLOW WATER EQUATION SOLUTIONS ON A ROTATING SPHERE

AU - Чупахин, Александр Павлович

AU - Стецяк, Елена Станиславовна

N1 - Chupakhin, A. P. The Geometric Properties of Shallow Water Equation Solutions on a Rotating Sphere / A. P. Chupakhin, E. S. Stetsyak // Lobachevskii Journal of Mathematics. – 2025. – Vol. 46, No. 9. – P. 4343-4355. – DOI 10.1134/S1995080225611609. – EDN LUVUVF.

PY - 2025

Y1 - 2025

N2 - This paper investigates the shallow water model on a rotating attracting sphere, which describes large-scale motions of gas and liquid on the surface of solid planets. We provide a description of the geometric characteristics of simple stationary waves obtained within this model. For two types of stationary wave solutions, an analysis of the curvature of the continuous medium’s profile is performed. Solutions with variable curvature profiles are shown to exist.

AB - This paper investigates the shallow water model on a rotating attracting sphere, which describes large-scale motions of gas and liquid on the surface of solid planets. We provide a description of the geometric characteristics of simple stationary waves obtained within this model. For two types of stationary wave solutions, an analysis of the curvature of the continuous medium’s profile is performed. Solutions with variable curvature profiles are shown to exist.

KW - SHALLOW WATER ON A SPHERE

KW - STATIONARY SOLUTIONS

KW - GAUSSIAN AND MEAN CURVATURE

UR - https://elibrary.ru/item.asp?id=88772187

UR - https://link.springer.com/article/10.1134/S1995080225611609

U2 - 10.1134/S1995080225611609

DO - 10.1134/S1995080225611609

M3 - Article

VL - 46

SP - 4343

EP - 4355

JO - Lobachevskii Journal of Mathematics

JF - Lobachevskii Journal of Mathematics

SN - 1995-0802

IS - 9

ER -

ID: 74217089