Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
The Domain of Admissible Parameters of a Box-Quasimetric on a Canonical Engel Group. / Greshnov, A. v.; Greshnova, S. a.
в: Siberian Advances in Mathematics, Том 35, № 2, 01.06.2025, стр. 113-118.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - The Domain of Admissible Parameters of a Box-Quasimetric on a Canonical Engel Group
AU - Greshnov, A. v.
AU - Greshnova, S. a.
N1 - The work was supported by the Russian Scientific Foundation (project no. 24-21-00319). Greshnov, A. V. The Domain of Admissible Parameters of a Box-Quasimetric on a Canonical Engel Group / A. V. Greshnov, S. A. Greshnova // Siberian Advances in Mathematics. – 2025. – Vol. 35, No. 2. – P. 113-118. – DOI 10.1134/S1055134425020038.
PY - 2025/6/1
Y1 - 2025/6/1
N2 - We regard a Box-quasimetric on a canonical Engel group as a symmetric (q1,q2)-quasimetric and find a description of the domain of admissible parameters q1 and q2 and an implicit form of the least constant q in the (q,q)-generalized triangle inequality.
AB - We regard a Box-quasimetric on a canonical Engel group as a symmetric (q1,q2)-quasimetric and find a description of the domain of admissible parameters q1 and q2 and an implicit form of the least constant q in the (q,q)-generalized triangle inequality.
KW - (q1,q2)- QUASIMETRIC
KW - BOX-QUASIMETRIC
KW - CANONICAL ENGEL GROUP
KW - ADMISSIBLE PARAMETER
UR - https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105012770759&origin=inward
UR - https://elibrary.ru/item.asp?id=82714808
U2 - 10.1134/S1055134425020038
DO - 10.1134/S1055134425020038
M3 - Article
VL - 35
SP - 113
EP - 118
JO - Siberian Advances in Mathematics
JF - Siberian Advances in Mathematics
SN - 1055-1344
IS - 2
ER -
ID: 68772123