Standard

The Anick Complex and the Hochschild Cohomology of the Manturov (2,3)-Group. / AlHussein, H.; Kolesnikov, P. S.

в: Siberian Mathematical Journal, Том 61, № 1, 01.2020, стр. 11-20.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

AlHussein H, Kolesnikov PS. The Anick Complex and the Hochschild Cohomology of the Manturov (2,3)-Group. Siberian Mathematical Journal. 2020 янв.;61(1):11-20. doi: 10.1134/S0037446620010024

Author

AlHussein, H. ; Kolesnikov, P. S. / The Anick Complex and the Hochschild Cohomology of the Manturov (2,3)-Group. в: Siberian Mathematical Journal. 2020 ; Том 61, № 1. стр. 11-20.

BibTeX

@article{3a36c0e6afda402e99065feecf40b2ef,
title = "The Anick Complex and the Hochschild Cohomology of the Manturov (2,3)-Group",
abstract = "The Manturov (2, 3)-group G32 is the group generated by three elements a, b, and c with defining relations a(2) = b(2) = c(2) = (abc)(2) = 1. We explicitly calculate the Anick chain complex for G32 by algebraic discrete Morse theory and evaluate the Hochschild cohomology groups of the group algebra kG32 with coefficients in all 1-dimensional bimodules over a field kof characteristic zero.",
keywords = "Hochschild cohomology, Anick resolution, Grobner-Shirshov basis, Morse matching, MORSE-THEORY, BASES",
author = "H. AlHussein and Kolesnikov, {P. S.}",
year = "2020",
month = jan,
doi = "10.1134/S0037446620010024",
language = "English",
volume = "61",
pages = "11--20",
journal = "Siberian Mathematical Journal",
issn = "0037-4466",
publisher = "MAIK NAUKA/INTERPERIODICA/SPRINGER",
number = "1",

}

RIS

TY - JOUR

T1 - The Anick Complex and the Hochschild Cohomology of the Manturov (2,3)-Group

AU - AlHussein, H.

AU - Kolesnikov, P. S.

PY - 2020/1

Y1 - 2020/1

N2 - The Manturov (2, 3)-group G32 is the group generated by three elements a, b, and c with defining relations a(2) = b(2) = c(2) = (abc)(2) = 1. We explicitly calculate the Anick chain complex for G32 by algebraic discrete Morse theory and evaluate the Hochschild cohomology groups of the group algebra kG32 with coefficients in all 1-dimensional bimodules over a field kof characteristic zero.

AB - The Manturov (2, 3)-group G32 is the group generated by three elements a, b, and c with defining relations a(2) = b(2) = c(2) = (abc)(2) = 1. We explicitly calculate the Anick chain complex for G32 by algebraic discrete Morse theory and evaluate the Hochschild cohomology groups of the group algebra kG32 with coefficients in all 1-dimensional bimodules over a field kof characteristic zero.

KW - Hochschild cohomology

KW - Anick resolution

KW - Grobner-Shirshov basis

KW - Morse matching

KW - MORSE-THEORY

KW - BASES

U2 - 10.1134/S0037446620010024

DO - 10.1134/S0037446620010024

M3 - Article

VL - 61

SP - 11

EP - 20

JO - Siberian Mathematical Journal

JF - Siberian Mathematical Journal

SN - 0037-4466

IS - 1

ER -

ID: 26076892