Standard

Testing Isomorphism of Central Cayley Graphs Over Almost Simple Groups in Polynomial Time. / Ponomarenko, I.; Vasil’ev, A.

в: Journal of Mathematical Sciences (United States), Том 234, № 2, 01.10.2018, стр. 219-236.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Ponomarenko, I & Vasil’ev, A 2018, 'Testing Isomorphism of Central Cayley Graphs Over Almost Simple Groups in Polynomial Time', Journal of Mathematical Sciences (United States), Том. 234, № 2, стр. 219-236. https://doi.org/10.1007/s10958-018-3998-3

APA

Vancouver

Ponomarenko I, Vasil’ev A. Testing Isomorphism of Central Cayley Graphs Over Almost Simple Groups in Polynomial Time. Journal of Mathematical Sciences (United States). 2018 окт. 1;234(2):219-236. doi: 10.1007/s10958-018-3998-3

Author

Ponomarenko, I. ; Vasil’ev, A. / Testing Isomorphism of Central Cayley Graphs Over Almost Simple Groups in Polynomial Time. в: Journal of Mathematical Sciences (United States). 2018 ; Том 234, № 2. стр. 219-236.

BibTeX

@article{3d3eb230794c407a983666d21b4f5e6c,
title = "Testing Isomorphism of Central Cayley Graphs Over Almost Simple Groups in Polynomial Time",
abstract = "A Cayley graph over a group G is said to be central if its connection set is a normal subset of G. It is proved that for any two central Cayley graphs over explicitly given almost simple groups of order n, the set of all isomorphisms from the first graph onto the second can be found in time poly (n).",
author = "I. Ponomarenko and A. Vasil{\textquoteright}ev",
year = "2018",
month = oct,
day = "1",
doi = "10.1007/s10958-018-3998-3",
language = "English",
volume = "234",
pages = "219--236",
journal = "Journal of Mathematical Sciences (United States)",
issn = "1072-3374",
publisher = "Springer Nature",
number = "2",

}

RIS

TY - JOUR

T1 - Testing Isomorphism of Central Cayley Graphs Over Almost Simple Groups in Polynomial Time

AU - Ponomarenko, I.

AU - Vasil’ev, A.

PY - 2018/10/1

Y1 - 2018/10/1

N2 - A Cayley graph over a group G is said to be central if its connection set is a normal subset of G. It is proved that for any two central Cayley graphs over explicitly given almost simple groups of order n, the set of all isomorphisms from the first graph onto the second can be found in time poly (n).

AB - A Cayley graph over a group G is said to be central if its connection set is a normal subset of G. It is proved that for any two central Cayley graphs over explicitly given almost simple groups of order n, the set of all isomorphisms from the first graph onto the second can be found in time poly (n).

UR - http://www.scopus.com/inward/record.url?scp=85052206016&partnerID=8YFLogxK

U2 - 10.1007/s10958-018-3998-3

DO - 10.1007/s10958-018-3998-3

M3 - Article

AN - SCOPUS:85052206016

VL - 234

SP - 219

EP - 236

JO - Journal of Mathematical Sciences (United States)

JF - Journal of Mathematical Sciences (United States)

SN - 1072-3374

IS - 2

ER -

ID: 17862282