Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Targeted correction of megabase-scale CNTN6 duplication in induced pluripotent stem cells and impacts on gene expression. / Gridina, Maria; Orlova, Polina; Serov, Oleg.
в: PeerJ, Том 13, № 1, e18567, 20.01.2025.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Targeted correction of megabase-scale CNTN6 duplication in induced pluripotent stem cells and impacts on gene expression
AU - Gridina, Maria
AU - Orlova, Polina
AU - Serov, Oleg
N1 - The study was supported by the Russian Science Foundation No-21-65-00017. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
PY - 2025/1/20
Y1 - 2025/1/20
N2 - Copy number variations of the human CNTN6 gene, resulting from megabase-scale microdeletions or microduplications in the 3p26.3 region, are frequently implicated in neurodevelopmental disorders such as intellectual disability and developmental delay. However, duplication of the full-length human CNTN6 gene presents with variable penetrance, resulting in phenotypes that range from neurodevelopmental disorders to no visible pathologies, even within the same family. Previously, we obtained a set of induced pluripotent stem cell lines derived from a patient with a CNTN6 gene duplication and from two healthy donors. Our findings demonstrated that CNTN6 expression in neurons carrying the duplication was significantly reduced. Additionally, the expression from the CNTN6 duplicated allele was markedly lower compared to the wild-type allele. Here, we first introduce a system for correcting megabase-scale duplications in induced pluripotent stem cells and secondly analyze the impact of this correction on CNTN6 gene expression. We showed that the deletion of one copy of the CNTN6 duplication did not affect the expression levels of the remaining allele in the neuronal cells.
AB - Copy number variations of the human CNTN6 gene, resulting from megabase-scale microdeletions or microduplications in the 3p26.3 region, are frequently implicated in neurodevelopmental disorders such as intellectual disability and developmental delay. However, duplication of the full-length human CNTN6 gene presents with variable penetrance, resulting in phenotypes that range from neurodevelopmental disorders to no visible pathologies, even within the same family. Previously, we obtained a set of induced pluripotent stem cell lines derived from a patient with a CNTN6 gene duplication and from two healthy donors. Our findings demonstrated that CNTN6 expression in neurons carrying the duplication was significantly reduced. Additionally, the expression from the CNTN6 duplicated allele was markedly lower compared to the wild-type allele. Here, we first introduce a system for correcting megabase-scale duplications in induced pluripotent stem cells and secondly analyze the impact of this correction on CNTN6 gene expression. We showed that the deletion of one copy of the CNTN6 duplication did not affect the expression levels of the remaining allele in the neuronal cells.
KW - CNTN6
KW - CRISPR/Cas9-mediated genome editing
KW - Cre/loxP system
KW - Differentiation of induced pluripotent stem cells
KW - Duplication
KW - Induced pluripotent stem cells
UR - https://www.mendeley.com/catalogue/c3ccb93f-5d68-3be3-9633-7f1135cdf5dd/
UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85215664978&origin=inward&txGid=b074504fc196ed1c40ad2a31a6788dbf
U2 - 10.7717/peerj.18567
DO - 10.7717/peerj.18567
M3 - Article
C2 - 39850828
VL - 13
JO - PeerJ
JF - PeerJ
SN - 2167-8359
IS - 1
M1 - e18567
ER -
ID: 63195984