Standard

Subtle hyperplanes. / Storozhuk, Konstantin Valer evich.

в: Сибирские электронные математические известия, Том 15, 01.01.2018, стр. 1553-1555.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Storozhuk, KVE 2018, 'Subtle hyperplanes', Сибирские электронные математические известия, Том. 15, стр. 1553-1555. https://doi.org/10.33048/semi.2018.15.128

APA

Storozhuk, K. V. E. (2018). Subtle hyperplanes. Сибирские электронные математические известия, 15, 1553-1555. https://doi.org/10.33048/semi.2018.15.128

Vancouver

Storozhuk KVE. Subtle hyperplanes. Сибирские электронные математические известия. 2018 янв. 1;15:1553-1555. doi: 10.33048/semi.2018.15.128

Author

Storozhuk, Konstantin Valer evich. / Subtle hyperplanes. в: Сибирские электронные математические известия. 2018 ; Том 15. стр. 1553-1555.

BibTeX

@article{5c011b856d524106a353836028fe2b31,
title = "Subtle hyperplanes",
abstract = "We show that the countably-dimensional vector space C00 of all sequences with finite support contains a convex cone K that does not include straight lines and is closed Archiemedean but not closed in the Mackey topology τ corresponding to the duality 〈C00|F〉, where F is a hyperplane in the algebraic dual space C00 #.",
keywords = "Cone, Duality of topology vector spaces, cone, duality of topology vector spaces",
author = "Storozhuk, {Konstantin Valer evich}",
year = "2018",
month = jan,
day = "1",
doi = "10.33048/semi.2018.15.128",
language = "English",
volume = "15",
pages = "1553--1555",
journal = "Сибирские электронные математические известия",
issn = "1813-3304",
publisher = "Sobolev Institute of Mathematics",

}

RIS

TY - JOUR

T1 - Subtle hyperplanes

AU - Storozhuk, Konstantin Valer evich

PY - 2018/1/1

Y1 - 2018/1/1

N2 - We show that the countably-dimensional vector space C00 of all sequences with finite support contains a convex cone K that does not include straight lines and is closed Archiemedean but not closed in the Mackey topology τ corresponding to the duality 〈C00|F〉, where F is a hyperplane in the algebraic dual space C00 #.

AB - We show that the countably-dimensional vector space C00 of all sequences with finite support contains a convex cone K that does not include straight lines and is closed Archiemedean but not closed in the Mackey topology τ corresponding to the duality 〈C00|F〉, where F is a hyperplane in the algebraic dual space C00 #.

KW - Cone

KW - Duality of topology vector spaces

KW - cone

KW - duality of topology vector spaces

UR - http://www.scopus.com/inward/record.url?scp=85074797737&partnerID=8YFLogxK

U2 - 10.33048/semi.2018.15.128

DO - 10.33048/semi.2018.15.128

M3 - Article

AN - SCOPUS:85074797737

VL - 15

SP - 1553

EP - 1555

JO - Сибирские электронные математические известия

JF - Сибирские электронные математические известия

SN - 1813-3304

ER -

ID: 22338536