Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
Study of the effect of supply of energy and mass on the formation of transonic region in supersonic flow in a channel of variable cross section. / Zamuraev, V. P.; Kalinina, A. P.
Proceedings of the XXV Conference on High-Energy Processes in Condensed Matter, HEPCM 2017: Dedicated to the 60th Anniversary of the Khristianovich Institute of Theoretical and Applied Mechanics SB RAS. ред. / Fomin. Том 1893 American Institute of Physics Inc., 2017. 030061 (AIP Conference Proceedings; Том 1893).Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
}
TY - GEN
T1 - Study of the effect of supply of energy and mass on the formation of transonic region in supersonic flow in a channel of variable cross section
AU - Zamuraev, V. P.
AU - Kalinina, A. P.
PY - 2017/10/26
Y1 - 2017/10/26
N2 - The control action of the jet and the near-wall energy sources on the shock wave structure of supersonic flow in a channel to create a transonic region is studied. The stable mode of flow with the region characterized by transonic velocities arises. The results of calculations for flat and axisymmetric model are presented. Two formulations of the problem are considered. The first of them is based on the unsteady Euler equations and pulse-periodic energy sources, and the second one is based on the unsteady Navier-Stokes equations closed by k-ω SST turbulence model. The combustion of hydrogen, which is supplied from the holes in the channel walls is considered.
AB - The control action of the jet and the near-wall energy sources on the shock wave structure of supersonic flow in a channel to create a transonic region is studied. The stable mode of flow with the region characterized by transonic velocities arises. The results of calculations for flat and axisymmetric model are presented. Two formulations of the problem are considered. The first of them is based on the unsteady Euler equations and pulse-periodic energy sources, and the second one is based on the unsteady Navier-Stokes equations closed by k-ω SST turbulence model. The combustion of hydrogen, which is supplied from the holes in the channel walls is considered.
UR - http://www.scopus.com/inward/record.url?scp=85034249660&partnerID=8YFLogxK
U2 - 10.1063/1.5007519
DO - 10.1063/1.5007519
M3 - Conference contribution
AN - SCOPUS:85034249660
VL - 1893
T3 - AIP Conference Proceedings
BT - Proceedings of the XXV Conference on High-Energy Processes in Condensed Matter, HEPCM 2017
A2 - Fomin, null
PB - American Institute of Physics Inc.
T2 - 25th Conference on High-Energy Processes in Condensed Matter, HEPCM 2017
Y2 - 5 June 2017 through 9 June 2017
ER -
ID: 9696041