Standard

Study of excited Ξ baryons with the P¯ ANDA detector. / The PANDA Collaboration.

в: European Physical Journal A, Том 57, № 4, 149, 04.2021.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

The PANDA Collaboration 2021, 'Study of excited Ξ baryons with the P¯ ANDA detector', European Physical Journal A, Том. 57, № 4, 149. https://doi.org/10.1140/epja/s10050-021-00444-5

APA

The PANDA Collaboration (2021). Study of excited Ξ baryons with the P¯ ANDA detector. European Physical Journal A, 57(4), [149]. https://doi.org/10.1140/epja/s10050-021-00444-5

Vancouver

The PANDA Collaboration. Study of excited Ξ baryons with the P¯ ANDA detector. European Physical Journal A. 2021 апр.;57(4):149. doi: 10.1140/epja/s10050-021-00444-5

Author

The PANDA Collaboration. / Study of excited Ξ baryons with the P¯ ANDA detector. в: European Physical Journal A. 2021 ; Том 57, № 4.

BibTeX

@article{af508e487fa7405e8c23f7a703cf65bc,
title = "Study of excited Ξ baryons with the P¯ ANDA detector",
abstract = "The study of baryon excitation spectra provides insight into the inner structure of baryons. So far, most of the world-wide efforts have been directed towards N∗ and Δ spectroscopy. Nevertheless, the study of the double and triple strange baryon spectrum provides independent information to the N∗ and Δ spectra. The future antiproton experiment P¯ANDA will provide direct access to final states containing a Ξ¯ Ξ pair, for which production cross sections up to μb are expected in p¯p reactions. With a luminosity of L= 10 31 cm- 2 s- 1 in the first phase of the experiment, the expected cross sections correspond to a production rate of ∼106events/day. With a nearly 4 π detector acceptance, P¯ANDA will thus be a hyperon factory. In this study, reactions of the type p¯p → Ξ¯ +Ξ∗ - as well as p¯p → Ξ¯ ∗ +Ξ- with various decay modes are investigated. For the exclusive reconstruction of the signal events a full decay tree fit is used, resulting in reconstruction efficiencies between 3 and 5%. This allows high statistics data to be collected within a few weeks of data taking.",
author = "{The PANDA Collaboration} and G. Barucca and F. Dav{\`i} and G. Lancioni and P. Mengucci and L. Montalto and Natali, {P. P.} and N. Paone and D. Rinaldi and L. Scalise and B. Krusche and M. Steinacher and Z. Liu and C. Liu and B. Liu and X. Shen and S. Sun and G. Zhao and J. Zhao and M. Albrecht and W. Alkakhi and S. B{\"o}kelmann and S. Coen and F. Feldbauer and M. Fink and J. Frech and V. Freudenreich and M. Fritsch and J. Grochowski and R. Hagdorn and Heinsius, {F. H.} and T. Held and T. Holtmann and I. Keshk and H. Koch and B. Kopf and M. K{\"u}mmel and M. K{\"u}{\ss}ner and J. Li and L. Linzen and S. Maldaner and J. Oppotsch and S. Pankonin and Barnyakov, {A. Yu} and K. Beloborodov and Blinov, {V. E.} and Kuyanov, {I. A.} and S. Pivovarov and Y. Tikhonov and S. Kononov and Kravchenko, {E. A.}",
note = "Funding Information: We acknowledge financial support from the Bhabha Atomic Research Centre (BARC) and the Indian Institute of Technology Bombay, India; the Bundesministerium f{\"u}r Bildung und Forschung (BMBF), Germany; the Carl-Zeiss-Stiftung 21-0563-2.8/122/1 and 21-0563-2.8/131/1, Mainz, Germany; the Center for Advanced Radiation Technology (KVI-CART), Groningen, Netherlands; the CNRS/IN2P3 and the Universit{\'e} Paris-Sud, France; the Czech Ministry (MEYS) Grants LM2015049, CZ.02.1.01/0.0/0.0/16 and 013/0001677, Czech Republic; the Deutsche Forschungsgemeinschaft (DFG), Germany; the Deutscher Akademischer Austauschdienst (DAAD), Germany; the European Union{\textquoteright}s Horizon 2020 research and innovation programme under grant agreement No 824093; the Forschungszentrum J{\"u}lich, Germany; the Gesellschaft f{\"u}r Schwerionenforschung GmbH (GSI), Darmstadt, Germany; the Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Germany; the INTAS, European Commission funding; the Institute of High Energy Physics (IHEP) and the Chinese Academy of Sciences, Beijing, China; the Istituto Nazionale di Fisica Nucleare (INFN), Italy; the Ministerio de Educaci{\'o}n y Ciencia (MEC) under grant FPA2006-12120-C03-02, Spain; the Polish Ministry of Science and Higher Education (MNiSW) Grant No. 2593/7, PR UE/2012/2, and the National Science Centre (NCN) DEC-2013/09/N/ST2/02180, Poland; the State Atomic Energy Corporation Rosatom, National Research Center Kurchatov Institute, Russia; the Schweizerischer Nationalfonds zur F{\"o}rderung der Wissenschaftlichen Forschung (SNF), Switzerland; the Science and Technology Facilities Council (STFC), British funding agency, Great Britain; the Scientific and Technological Research Council of Turkey (TUBITAK) under the Grant No. 119F094, Turkey; the Stefan Meyer Institut f{\"u}r Subatomare Physik and the {\"O}sterreichische Akademie der Wissenschaften, Wien, Austria; the Swedish Research Council and the Knut and Alice Wallenberg Foundation, Sweden. Publisher Copyright: {\textcopyright} 2021, The Author(s). Copyright: Copyright 2021 Elsevier B.V., All rights reserved.",
year = "2021",
month = apr,
doi = "10.1140/epja/s10050-021-00444-5",
language = "English",
volume = "57",
journal = "European Physical Journal A",
issn = "1434-6001",
publisher = "Springer Nature",
number = "4",

}

RIS

TY - JOUR

T1 - Study of excited Ξ baryons with the P¯ ANDA detector

AU - The PANDA Collaboration

AU - Barucca, G.

AU - Davì, F.

AU - Lancioni, G.

AU - Mengucci, P.

AU - Montalto, L.

AU - Natali, P. P.

AU - Paone, N.

AU - Rinaldi, D.

AU - Scalise, L.

AU - Krusche, B.

AU - Steinacher, M.

AU - Liu, Z.

AU - Liu, C.

AU - Liu, B.

AU - Shen, X.

AU - Sun, S.

AU - Zhao, G.

AU - Zhao, J.

AU - Albrecht, M.

AU - Alkakhi, W.

AU - Bökelmann, S.

AU - Coen, S.

AU - Feldbauer, F.

AU - Fink, M.

AU - Frech, J.

AU - Freudenreich, V.

AU - Fritsch, M.

AU - Grochowski, J.

AU - Hagdorn, R.

AU - Heinsius, F. H.

AU - Held, T.

AU - Holtmann, T.

AU - Keshk, I.

AU - Koch, H.

AU - Kopf, B.

AU - Kümmel, M.

AU - Küßner, M.

AU - Li, J.

AU - Linzen, L.

AU - Maldaner, S.

AU - Oppotsch, J.

AU - Pankonin, S.

AU - Barnyakov, A. Yu

AU - Beloborodov, K.

AU - Blinov, V. E.

AU - Kuyanov, I. A.

AU - Pivovarov, S.

AU - Tikhonov, Y.

AU - Kononov, S.

AU - Kravchenko, E. A.

N1 - Funding Information: We acknowledge financial support from the Bhabha Atomic Research Centre (BARC) and the Indian Institute of Technology Bombay, India; the Bundesministerium für Bildung und Forschung (BMBF), Germany; the Carl-Zeiss-Stiftung 21-0563-2.8/122/1 and 21-0563-2.8/131/1, Mainz, Germany; the Center for Advanced Radiation Technology (KVI-CART), Groningen, Netherlands; the CNRS/IN2P3 and the Université Paris-Sud, France; the Czech Ministry (MEYS) Grants LM2015049, CZ.02.1.01/0.0/0.0/16 and 013/0001677, Czech Republic; the Deutsche Forschungsgemeinschaft (DFG), Germany; the Deutscher Akademischer Austauschdienst (DAAD), Germany; the European Union’s Horizon 2020 research and innovation programme under grant agreement No 824093; the Forschungszentrum Jülich, Germany; the Gesellschaft für Schwerionenforschung GmbH (GSI), Darmstadt, Germany; the Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Germany; the INTAS, European Commission funding; the Institute of High Energy Physics (IHEP) and the Chinese Academy of Sciences, Beijing, China; the Istituto Nazionale di Fisica Nucleare (INFN), Italy; the Ministerio de Educación y Ciencia (MEC) under grant FPA2006-12120-C03-02, Spain; the Polish Ministry of Science and Higher Education (MNiSW) Grant No. 2593/7, PR UE/2012/2, and the National Science Centre (NCN) DEC-2013/09/N/ST2/02180, Poland; the State Atomic Energy Corporation Rosatom, National Research Center Kurchatov Institute, Russia; the Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (SNF), Switzerland; the Science and Technology Facilities Council (STFC), British funding agency, Great Britain; the Scientific and Technological Research Council of Turkey (TUBITAK) under the Grant No. 119F094, Turkey; the Stefan Meyer Institut für Subatomare Physik and the Österreichische Akademie der Wissenschaften, Wien, Austria; the Swedish Research Council and the Knut and Alice Wallenberg Foundation, Sweden. Publisher Copyright: © 2021, The Author(s). Copyright: Copyright 2021 Elsevier B.V., All rights reserved.

PY - 2021/4

Y1 - 2021/4

N2 - The study of baryon excitation spectra provides insight into the inner structure of baryons. So far, most of the world-wide efforts have been directed towards N∗ and Δ spectroscopy. Nevertheless, the study of the double and triple strange baryon spectrum provides independent information to the N∗ and Δ spectra. The future antiproton experiment P¯ANDA will provide direct access to final states containing a Ξ¯ Ξ pair, for which production cross sections up to μb are expected in p¯p reactions. With a luminosity of L= 10 31 cm- 2 s- 1 in the first phase of the experiment, the expected cross sections correspond to a production rate of ∼106events/day. With a nearly 4 π detector acceptance, P¯ANDA will thus be a hyperon factory. In this study, reactions of the type p¯p → Ξ¯ +Ξ∗ - as well as p¯p → Ξ¯ ∗ +Ξ- with various decay modes are investigated. For the exclusive reconstruction of the signal events a full decay tree fit is used, resulting in reconstruction efficiencies between 3 and 5%. This allows high statistics data to be collected within a few weeks of data taking.

AB - The study of baryon excitation spectra provides insight into the inner structure of baryons. So far, most of the world-wide efforts have been directed towards N∗ and Δ spectroscopy. Nevertheless, the study of the double and triple strange baryon spectrum provides independent information to the N∗ and Δ spectra. The future antiproton experiment P¯ANDA will provide direct access to final states containing a Ξ¯ Ξ pair, for which production cross sections up to μb are expected in p¯p reactions. With a luminosity of L= 10 31 cm- 2 s- 1 in the first phase of the experiment, the expected cross sections correspond to a production rate of ∼106events/day. With a nearly 4 π detector acceptance, P¯ANDA will thus be a hyperon factory. In this study, reactions of the type p¯p → Ξ¯ +Ξ∗ - as well as p¯p → Ξ¯ ∗ +Ξ- with various decay modes are investigated. For the exclusive reconstruction of the signal events a full decay tree fit is used, resulting in reconstruction efficiencies between 3 and 5%. This allows high statistics data to be collected within a few weeks of data taking.

UR - http://www.scopus.com/inward/record.url?scp=85104834772&partnerID=8YFLogxK

U2 - 10.1140/epja/s10050-021-00444-5

DO - 10.1140/epja/s10050-021-00444-5

M3 - Article

AN - SCOPUS:85104834772

VL - 57

JO - European Physical Journal A

JF - European Physical Journal A

SN - 1434-6001

IS - 4

M1 - 149

ER -

ID: 28504758