Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Structure of Quasivariety Lattices. III. Finitely Partitionable Bases. / Kravchenko, A. V.; Nurakunov, A. M.; Schwidefsky, M. V.
в: Algebra and Logic, Том 59, № 3, 07.2020, стр. 222-229.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Structure of Quasivariety Lattices. III. Finitely Partitionable Bases
AU - Kravchenko, A. V.
AU - Nurakunov, A. M.
AU - Schwidefsky, M. V.
N1 - Publisher Copyright: © 2020, Springer Science+Business Media, LLC, part of Springer Nature. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/7
Y1 - 2020/7
N2 - We prove that each quasivariety containing a B-class has continuum many subquasivarieties with finitely partitionable ω-independent quasi-equational basis.
AB - We prove that each quasivariety containing a B-class has continuum many subquasivarieties with finitely partitionable ω-independent quasi-equational basis.
KW - finitely partitionable basis
KW - independent basis
KW - quasi-identity
KW - quasivariety
KW - DIFFERENTIAL GROUPOIDS
KW - COMPLEXITY
UR - http://www.scopus.com/inward/record.url?scp=85094651068&partnerID=8YFLogxK
U2 - 10.1007/s10469-020-09594-9
DO - 10.1007/s10469-020-09594-9
M3 - Article
AN - SCOPUS:85094651068
VL - 59
SP - 222
EP - 229
JO - Algebra and Logic
JF - Algebra and Logic
SN - 0002-5232
IS - 3
ER -
ID: 25997154