Standard

Structure of Quasivariety Lattices. III. Finitely Partitionable Bases. / Kravchenko, A. V.; Nurakunov, A. M.; Schwidefsky, M. V.

в: Algebra and Logic, Том 59, № 3, 07.2020, стр. 222-229.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Kravchenko AV, Nurakunov AM, Schwidefsky MV. Structure of Quasivariety Lattices. III. Finitely Partitionable Bases. Algebra and Logic. 2020 июль;59(3):222-229. doi: 10.1007/s10469-020-09594-9

Author

Kravchenko, A. V. ; Nurakunov, A. M. ; Schwidefsky, M. V. / Structure of Quasivariety Lattices. III. Finitely Partitionable Bases. в: Algebra and Logic. 2020 ; Том 59, № 3. стр. 222-229.

BibTeX

@article{fe1d4cb0be394d788ff1593f7a088052,
title = "Structure of Quasivariety Lattices. III. Finitely Partitionable Bases",
abstract = "We prove that each quasivariety containing a B-class has continuum many subquasivarieties with finitely partitionable ω-independent quasi-equational basis.",
keywords = "finitely partitionable basis, independent basis, quasi-identity, quasivariety, DIFFERENTIAL GROUPOIDS, COMPLEXITY",
author = "Kravchenko, {A. V.} and Nurakunov, {A. M.} and Schwidefsky, {M. V.}",
note = "Publisher Copyright: {\textcopyright} 2020, Springer Science+Business Media, LLC, part of Springer Nature. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.",
year = "2020",
month = jul,
doi = "10.1007/s10469-020-09594-9",
language = "English",
volume = "59",
pages = "222--229",
journal = "Algebra and Logic",
issn = "0002-5232",
publisher = "Springer US",
number = "3",

}

RIS

TY - JOUR

T1 - Structure of Quasivariety Lattices. III. Finitely Partitionable Bases

AU - Kravchenko, A. V.

AU - Nurakunov, A. M.

AU - Schwidefsky, M. V.

N1 - Publisher Copyright: © 2020, Springer Science+Business Media, LLC, part of Springer Nature. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.

PY - 2020/7

Y1 - 2020/7

N2 - We prove that each quasivariety containing a B-class has continuum many subquasivarieties with finitely partitionable ω-independent quasi-equational basis.

AB - We prove that each quasivariety containing a B-class has continuum many subquasivarieties with finitely partitionable ω-independent quasi-equational basis.

KW - finitely partitionable basis

KW - independent basis

KW - quasi-identity

KW - quasivariety

KW - DIFFERENTIAL GROUPOIDS

KW - COMPLEXITY

UR - http://www.scopus.com/inward/record.url?scp=85094651068&partnerID=8YFLogxK

U2 - 10.1007/s10469-020-09594-9

DO - 10.1007/s10469-020-09594-9

M3 - Article

AN - SCOPUS:85094651068

VL - 59

SP - 222

EP - 229

JO - Algebra and Logic

JF - Algebra and Logic

SN - 0002-5232

IS - 3

ER -

ID: 25997154