Standard

Structure of Quasivariety Lattices. I. Independent Axiomatizability. / Kravchenko, A. V.; Nurakunov, A. M.; Schwidefsky, M. V.

в: Algebra and Logic, Том 57, № 6, 15.01.2019, стр. 445-462.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Kravchenko AV, Nurakunov AM, Schwidefsky MV. Structure of Quasivariety Lattices. I. Independent Axiomatizability. Algebra and Logic. 2019 янв. 15;57(6):445-462. doi: 10.1007/s10469-019-09516-4

Author

Kravchenko, A. V. ; Nurakunov, A. M. ; Schwidefsky, M. V. / Structure of Quasivariety Lattices. I. Independent Axiomatizability. в: Algebra and Logic. 2019 ; Том 57, № 6. стр. 445-462.

BibTeX

@article{23cd93cb533940acbc44c1accc9f261f,
title = "Structure of Quasivariety Lattices. I. Independent Axiomatizability",
abstract = "We find a sufficient condition for a quasivariety K to have continuum many subquasivarieties that have no independent quasi-equational bases relative to K but have ω-independent quasi-equational bases relative to K. This condition also implies that K is Q-universal.",
keywords = "independent basis, Q-universality, quasi-identity, quasivariety, quasivariety lattice, UNIVERSAL QUASIVARIETIES",
author = "Kravchenko, {A. V.} and Nurakunov, {A. M.} and Schwidefsky, {M. V.}",
year = "2019",
month = jan,
day = "15",
doi = "10.1007/s10469-019-09516-4",
language = "English",
volume = "57",
pages = "445--462",
journal = "Algebra and Logic",
issn = "0002-5232",
publisher = "Springer US",
number = "6",

}

RIS

TY - JOUR

T1 - Structure of Quasivariety Lattices. I. Independent Axiomatizability

AU - Kravchenko, A. V.

AU - Nurakunov, A. M.

AU - Schwidefsky, M. V.

PY - 2019/1/15

Y1 - 2019/1/15

N2 - We find a sufficient condition for a quasivariety K to have continuum many subquasivarieties that have no independent quasi-equational bases relative to K but have ω-independent quasi-equational bases relative to K. This condition also implies that K is Q-universal.

AB - We find a sufficient condition for a quasivariety K to have continuum many subquasivarieties that have no independent quasi-equational bases relative to K but have ω-independent quasi-equational bases relative to K. This condition also implies that K is Q-universal.

KW - independent basis

KW - Q-universality

KW - quasi-identity

KW - quasivariety

KW - quasivariety lattice

KW - UNIVERSAL QUASIVARIETIES

UR - http://www.scopus.com/inward/record.url?scp=85063969516&partnerID=8YFLogxK

U2 - 10.1007/s10469-019-09516-4

DO - 10.1007/s10469-019-09516-4

M3 - Article

AN - SCOPUS:85063969516

VL - 57

SP - 445

EP - 462

JO - Algebra and Logic

JF - Algebra and Logic

SN - 0002-5232

IS - 6

ER -

ID: 19358966