Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Structural aspects of twin and pure twin groups. / Bardakov, Valeriy; Singh, Mahender; Vesnin, Andrei.
в: Geometriae Dedicata, Том 203, № 1, 01.12.2019, стр. 135-154.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Structural aspects of twin and pure twin groups
AU - Bardakov, Valeriy
AU - Singh, Mahender
AU - Vesnin, Andrei
PY - 2019/12/1
Y1 - 2019/12/1
N2 - The twin group T n is a Coxeter group generated by n- 1 involutions and the pure twin group PT n is the kernel of the natural surjection of T n onto the symmetric group on n letters. In this paper, we investigate structural aspects of twin and pure twin groups. We prove that the twin group T n decomposes into a free product with amalgamation for n> 4. It is shown that the pure twin group PT n is free for n= 3 , 4 , and not free for n≥ 6. We determine a generating set for PT n , and give an upper bound for its rank. We also construct a natural faithful representation of T 4 into Aut (F 7 ). In the end, we propose virtual and welded analogues of these groups and some directions for future work.
AB - The twin group T n is a Coxeter group generated by n- 1 involutions and the pure twin group PT n is the kernel of the natural surjection of T n onto the symmetric group on n letters. In this paper, we investigate structural aspects of twin and pure twin groups. We prove that the twin group T n decomposes into a free product with amalgamation for n> 4. It is shown that the pure twin group PT n is free for n= 3 , 4 , and not free for n≥ 6. We determine a generating set for PT n , and give an upper bound for its rank. We also construct a natural faithful representation of T 4 into Aut (F 7 ). In the end, we propose virtual and welded analogues of these groups and some directions for future work.
KW - Coxeter group
KW - Doodle
KW - Eilenberg–Maclane space
KW - Free group
KW - Hyperbolic plane
KW - Pure twin group
KW - Twin group
UR - http://www.scopus.com/inward/record.url?scp=85062792034&partnerID=8YFLogxK
U2 - 10.1007/s10711-019-00429-1
DO - 10.1007/s10711-019-00429-1
M3 - Article
AN - SCOPUS:85062792034
VL - 203
SP - 135
EP - 154
JO - Geometriae Dedicata
JF - Geometriae Dedicata
SN - 0046-5755
IS - 1
ER -
ID: 18860761