Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Strong Law of Large Numbers for a Function of the Local Times of a Transient Random Walk in Zd. / Asymont, Inna M.; Korshunov, Dmitry.
в: Journal of Theoretical Probability, Том 33, № 4, 01.12.2020, стр. 2315-2336.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Strong Law of Large Numbers for a Function of the Local Times of a Transient Random Walk in Zd
AU - Asymont, Inna M.
AU - Korshunov, Dmitry
N1 - Publisher Copyright: © 2019, The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/12/1
Y1 - 2020/12/1
N2 - For an arbitrary transient random walk (Sn)n≥0 in Zd, d≥ 1 , we prove a strong law of large numbers for the spatial sum ∑x∈Zdf(l(n,x)) of a function f of the local times l(n,x)=∑i=0nI{Si=x}. Particular cases are the number of(a)visited sites [first considered by Dvoretzky and Erdős (Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, pp 353–367, 1951)], which corresponds to the function f(i) = I{ i≥ 1 } ;(b)α-fold self-intersections of the random walk [studied by Becker and König (J Theor Probab 22:365–374, 2009)], which corresponds to f(i) = iα;(c)sites visited by the random walk exactly j times [considered by Erdős and Taylor (Acta Math Acad Sci Hung 11:137–162, 1960) and Pitt (Proc Am Math Soc 43:195–199, 1974)], where f(i) = I{ i= j}.
AB - For an arbitrary transient random walk (Sn)n≥0 in Zd, d≥ 1 , we prove a strong law of large numbers for the spatial sum ∑x∈Zdf(l(n,x)) of a function f of the local times l(n,x)=∑i=0nI{Si=x}. Particular cases are the number of(a)visited sites [first considered by Dvoretzky and Erdős (Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, pp 353–367, 1951)], which corresponds to the function f(i) = I{ i≥ 1 } ;(b)α-fold self-intersections of the random walk [studied by Becker and König (J Theor Probab 22:365–374, 2009)], which corresponds to f(i) = iα;(c)sites visited by the random walk exactly j times [considered by Erdős and Taylor (Acta Math Acad Sci Hung 11:137–162, 1960) and Pitt (Proc Am Math Soc 43:195–199, 1974)], where f(i) = I{ i= j}.
KW - Local times
KW - Strong law of large numbers
KW - Transient random walk in Z
KW - math><mml
KW - Transient random walk in <mml
KW - msup><mml
KW - end{document}<inline-graphic xlink
KW - usepackage{amssymb}
KW - setlength{
KW - usepackage{amsmath}
KW - oddsidemargin}{-69pt}
KW - math>
KW - usepackage{wasysym}
KW - usepackage{amsbsy}
KW - begin{document}$${
KW - usepackage{upgreek}
KW - mi></mml
KW - usepackage{amsfonts}
KW - msup></mml
KW - gif"
KW - documentclass[12pt]{minimal}
KW - href="10959_2019_937_Article_IEq12
KW - mrow><mml
KW - mi mathvariant="double-struck">Z</mml
KW - usepackage{mathrsfs}
KW - mi>d</mml
KW - mathbb {Z}}<^>d$$
KW - >
KW - MOMENTS
UR - http://www.scopus.com/inward/record.url?scp=85072040979&partnerID=8YFLogxK
U2 - 10.1007/s10959-019-00937-6
DO - 10.1007/s10959-019-00937-6
M3 - Article
AN - SCOPUS:85072040979
VL - 33
SP - 2315
EP - 2336
JO - Journal of Theoretical Probability
JF - Journal of Theoretical Probability
SN - 0894-9840
IS - 4
ER -
ID: 27417390