Standard

Strong Degrees of Categoricity and Weak Density. / Bazhenov, N. A.; Kalimullin, I. Sh; Yamaleev, M. M.

в: Lobachevskii Journal of Mathematics, Том 41, № 9, 09.2020, стр. 1630-1639.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Bazhenov, NA, Kalimullin, IS & Yamaleev, MM 2020, 'Strong Degrees of Categoricity and Weak Density', Lobachevskii Journal of Mathematics, Том. 41, № 9, стр. 1630-1639. https://doi.org/10.1134/S1995080220090048

APA

Bazhenov, N. A., Kalimullin, I. S., & Yamaleev, M. M. (2020). Strong Degrees of Categoricity and Weak Density. Lobachevskii Journal of Mathematics, 41(9), 1630-1639. https://doi.org/10.1134/S1995080220090048

Vancouver

Bazhenov NA, Kalimullin IS, Yamaleev MM. Strong Degrees of Categoricity and Weak Density. Lobachevskii Journal of Mathematics. 2020 сент.;41(9):1630-1639. doi: 10.1134/S1995080220090048

Author

Bazhenov, N. A. ; Kalimullin, I. Sh ; Yamaleev, M. M. / Strong Degrees of Categoricity and Weak Density. в: Lobachevskii Journal of Mathematics. 2020 ; Том 41, № 9. стр. 1630-1639.

BibTeX

@article{b4157b8398fa4290a7598dfa87ef202d,
title = "Strong Degrees of Categoricity and Weak Density",
abstract = "It is well-known that every c.e. Turing degree is the degree of categoricity of a rigid structure. In this work we study the possibility of extension of this result to properly 2-c.e. degrees. We found a condition such that if a Δ02-degree is a degree of categoricity of a rigid structure and satisfies this condition then it must be c.e. Also we show that degrees of non-categoricity are dense in the c.e. degrees.",
keywords = "computable isomorphism, computably enumerable sets, degree of categoricity, rigid structure, Turing degrees, STABILITY, COMPUTABLE CATEGORICITY, SPECTRA, RECURSIVE STRUCTURES, AUTOSTABILITY",
author = "Bazhenov, {N. A.} and Kalimullin, {I. Sh} and Yamaleev, {M. M.}",
note = "Funding Information: The work was supported by the Russian Science Foundation, project no. 18-11-00028. Publisher Copyright: {\textcopyright} 2020, Pleiades Publishing, Ltd. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.",
year = "2020",
month = sep,
doi = "10.1134/S1995080220090048",
language = "English",
volume = "41",
pages = "1630--1639",
journal = "Lobachevskii Journal of Mathematics",
issn = "1995-0802",
publisher = "Maik Nauka Publishing / Springer SBM",
number = "9",

}

RIS

TY - JOUR

T1 - Strong Degrees of Categoricity and Weak Density

AU - Bazhenov, N. A.

AU - Kalimullin, I. Sh

AU - Yamaleev, M. M.

N1 - Funding Information: The work was supported by the Russian Science Foundation, project no. 18-11-00028. Publisher Copyright: © 2020, Pleiades Publishing, Ltd. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.

PY - 2020/9

Y1 - 2020/9

N2 - It is well-known that every c.e. Turing degree is the degree of categoricity of a rigid structure. In this work we study the possibility of extension of this result to properly 2-c.e. degrees. We found a condition such that if a Δ02-degree is a degree of categoricity of a rigid structure and satisfies this condition then it must be c.e. Also we show that degrees of non-categoricity are dense in the c.e. degrees.

AB - It is well-known that every c.e. Turing degree is the degree of categoricity of a rigid structure. In this work we study the possibility of extension of this result to properly 2-c.e. degrees. We found a condition such that if a Δ02-degree is a degree of categoricity of a rigid structure and satisfies this condition then it must be c.e. Also we show that degrees of non-categoricity are dense in the c.e. degrees.

KW - computable isomorphism

KW - computably enumerable sets

KW - degree of categoricity

KW - rigid structure

KW - Turing degrees

KW - STABILITY

KW - COMPUTABLE CATEGORICITY

KW - SPECTRA

KW - RECURSIVE STRUCTURES

KW - AUTOSTABILITY

UR - http://www.scopus.com/inward/record.url?scp=85095597282&partnerID=8YFLogxK

U2 - 10.1134/S1995080220090048

DO - 10.1134/S1995080220090048

M3 - Article

AN - SCOPUS:85095597282

VL - 41

SP - 1630

EP - 1639

JO - Lobachevskii Journal of Mathematics

JF - Lobachevskii Journal of Mathematics

SN - 1995-0802

IS - 9

ER -

ID: 26000709